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Abstract. We present a decision procedure for the full branching-time
logic CTL∗ which is based on tableaux with global conditions on infinite
branches. These conditions can be checked using automata-theoretic
machinery. The decision procedure then consists of a doubly exponential
reduction to the problem of solving a parity game. This has advantages
over existing decision procedures for CTL∗, in particular the automata-
theoretic ones: the underlying tableaux only work on subformulas of the
input formula. The relationship between the structure of such tableaux
and the input formula is given by very intuitive tableau rules. Furthermore,
runtime experiments with an implementation of this procedure in the
MLSolver tool show the practicality of this approach within the limits of
the problem’s computational complexity of being 2EXPTIME-complete.

1 Introduction

The full branching-time temporal logic CTL∗ is an important tool for the specifi-
cation and verification of reactive systems [9] and of agent-based systems [13],
for program synthesis [16], etc. Emerson and Halpern have introduced CTL∗ [4]
as a formalism which supersedes both the branching-time logic CTL and the
linear-time logic LTL. As much as this has led to an easy unification of CTL and
LTL, it has also proved to be quite a difficulty in obtaining decision procedures
for this logic. The first was automata-theoretic [6], requiring the determinisation
of !-word automata resulting from linear-time formulas. A series of improve-
ments in this part has eventually led to Emerson and Jutla’s automata-theoretic
decision procedure [5] whose asymptotic worst-case running time is optimal,
namely doubly exponential [22]. Other procedures have been given some time
later, namely Reynolds’ proof system [17], Gabbay and Pnueli’s proof system [9],
and most recently Reynolds’ tableaux [18].

In this paper we present a characterisation of CTL∗ satisfiability. It is for-
mulated as a calculus of infinite tableaux with natural rules and with global
conditions on their branches. The non-termination of the tableaux raises the
question after an effective decision procedure based on this calculus, and it is only
here that we use automata-theoretic machinery. Branches violating the global
condition are recognisable by nondeterministic Büchi automata, and we can then
use determinisation and complementation to reduce the question of existence of
a tableau to the problem of solving a doubly exponentially large parity game.



This also yields an asymptotically optimal decision procedure which has
two distinct advantages over some of the existing ones. First, the tableaux only
use subformulas of the input formula, while automata are only used on top of
the tableaux in order to check the global conditions. Second, the reduction is
implemented in the modal fixpoint solver MLSolver [7] which uses the high-
performance parity game solver PGSolver [8] as a backend. The work presented
here is therefore—to the best of our knowledge—the first serious attempt at
creating a practical decision procedure for CTL∗.

The rest of the paper is organised as follows. Sect. 2 recalls CTL∗. Sect. 3
introduces the tableau calculus. Soundness and completeness are technically
non-trivial to prove but still proceed along standard lines. The detailed proofs
are omitted for lack of space and contained in an appendix. Sect. 4 presents a
decision procedure which uses automata-theory in order to reduce the satisfiability
problem to the problem of solving a parity game. Sect. 5 highlights the advantages
of this approach in comparison to existing others. Sect. 6 reports on experimental
results.

2 CTL∗

Let P be a countably infinite set of propositional constants. A transition system
is a tuple T = (S, s∗,→, �) with (S,→) being a directed graph, s∗ ∈ S being
a designated starting state and � : S → 2P is a labeling function. We assume
transition systems to be total, i.e. every state has at least one successor. A path
� in T is an infinite sequence of states s0, s1, . . . s.t. si → si+1 for all i. With �k

we denote the suffix of � starting with state sk, and �(k) denotes sk in this case.
Branching-time temporal formulas are given by the following grammar.

' ::= q ∣ ¬' ∣ ' ∧ ' ∣ X' ∣ 'U' ∣ E'

where q ∈ P . Formulas of the form q or ¬q are called literals. We use ℓ̄ to denote
the complement of a literal ℓ, i.e. ℓ̄ = ¬q if ℓ = q and ℓ̄ = q if ℓ = ¬q.

Other constructs like tt, ff,∨,→ are derived as usual, and so are the temporal
ones 'R := ¬(¬'U¬ ), G' = ffR', F' = ttU', and A' := ¬E¬'. A formula
of this extended syntax is in positive normal form if ¬ only occurs in front of a
propositional constant. The set of subformulas of ' is denoted by Sub(') and
defined as usual by setting Sub(' ∘ ) := {' ∘ , X(' ∘ )} ∪ Sub(')∪ Sub( ) for
∘ being U or R. The notation is extended to formula sets in the usual way. The
size ∣'∣ of a formula ' is number of its subformulas. A quantifier-bound formula
block is an E- or A-labeled set of formulas. We omit the braces for singleton sets.
Formulas are interpreted over paths � of a transition systems T = (S, s∗,→, �).

T , � ∣= q iff q ∈ �(�(0))
T , � ∣= ¬' iff T , � ∕∣= '
T , � ∣= ' ∧  iff T , � ∣= ' and T , � ∣=  
T , � ∣= X' iff T , �1 ∣= '
T , � ∣= 'U iff ∃k ∈ ℕ, T , �k ∣=  and ∀j < k : T , �j ∣= '
T , � ∣= E' iff ∃�′, s.t. �′(0) = �(0) and T , �′ ∣= '



A(',�), A( ,�), �
(A∧)

A(' ∧  ,�), �

A(', ,�), �
(A∨)

A(' ∨  ,�), �

ℓ, � ∣ A�,�
(Al)

A(ℓ,�), �

A( ,',�), A( , X('U ), �), �
(AU)

A('U ,�), �

A( ,�), A(', X('R ), �), �
(AR)

A('R ,�), �

A',� ∣ A�,�
(AA)

A(A',�), �

E',� ∣ A�,�
(AE)

A(E',�), �
�(Ett)

E∅, �
E(',�), � ∣ E( ,�), �

(E∨)
E(' ∨  ,�), �

E(', ,�), �
(E∧)

E(' ∧  ,�), �

E�, ℓ, �
(El)

E(ℓ,�), �

E( ,�), � ∣ E(', X('U ), �), �
(EU)

E('U ,�), �

E', E�,�
(EE)

E(E',�), �

E( ,',�), � ∣ E( , X('R ), �), �
(ER)

E('R ,�), �

A', E�,�
(EA)

E(A',�), �

A�1, . . . , A�m
(X0)

AX�1, . . . , AX�m, �

E�1, A�1, . . . , A�m . . . E�n, A�1, . . . , A�m
(X1)

EX�1, . . . , EX�n, AX�1, . . . , AX�m, �

Fig. 1. The pre-tableau rules for CTL∗.

Two formulas ' and  are equivalent, written ' ≡  , if for all paths � of all
transition systems T : T , � ∣= ' iff T , � ∣=  . It is well-known and easy to see
that every formula is equivalent to one in positive normal form. A formula '
is called a state formula if for all T , �, �′ with �(0) = �′(0) we have T , � ∣= '
iff T , �′ ∣= '. Hence, satisfaction of a state formula in a path only depends on
the first state of the path. Note that ' is a state formula iff ' ≡ E'. For state
formulas we also write T , s ∣= ' for s ∈ S. CTL∗ is the set of all branching-time
formulas which are state formulas. A CTL∗ formula ' is satisfiable if there is a
transition system T with an initial state s∗ s.t. T , s∗ ∣= '.

3 Tableaux for CTL∗

From now on, formulas are assumed to be in positive normal form. We will
construct a tableau for a given state formula #. The following notations are used:
� and � are finite (possibly empty) sets of formulas with � being interpreted as
a disjunction of formulas and � as a conjunction. We write � for a set of literals.
For a set of formulas � let X� := {X ∣  ∈ �}. A goal (for #) is a non-empty set—
the outermost braces are omitted—of the form A�1, . . . , A�n, E�1, . . . , E�m, �
where n,m ≥ 0, and �1, . . . , �n, �1, . . . ,�m, � are subsets of Sub(#). Such a
goal stands for the state formula

⋀n
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)
∧
⋀m
i=1 E

(⋀
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)
∧
⋀
ℓ∈� ℓ.

Goals are denoted by C. We write Seq(#) for the set of all possible goals for #.
Note that this is a finite set of at most doubly exponential size in ∣#∣. A goal C is
consistent if there is no q ∈ P s.t. q ∈ C and ¬q ∈ C.



Definition 1. A pre-tableau for # is a possibly infinite tree built according to
the rules of Fig. 1 whose root is E#, whose nodes are all consistent and do not
contain A∅, and whose leaves consist of literals only.

We write pre-tableaux as trees growing upwards. Consequently, a rule in Fig. 1
has a goal at the bottom and one or several subgoals at the top. Letter ℓ stands
for arbitrary literals. Rule (X1) is the only rule with more than one subgoal, rules
(Al), (AA), (AE), (E∨), (EU), (ER) each have a single subgoal which can be chosen
nondeterministically to be of either of two forms.

An occurrence of a formula is called principal if it gets transformed by a rule.
For example, the occurrence of ' ∧  is principal in (E∧). A principal formula
has descendants in the subgoals. For example, both occurrences of ' and  are
descendants of the principal ' ∧  in rule (E∧).

Note that, in the modal rules (X0) and (X1), every formula apart from those
in the literal part is principal. Literals in the literal part can never be principal,
but literals in an A- or E-block are principal in rules (Al) and (El). Finally, any
non-principal occurrence of a formula in a goal may have a copy in one of the
subgoals. The copy is the same formula since it has not been transformed. For
instance, any formula in � in rule (Al) has a copy in the subgoal if it is of the
right form, but does not have a copy if it is of the left form.

A quantifier-bound block A� or E� is called principal as well if it contains a
principal formula, and possibly has descendants in the subgoal(s). For example,
A(' ∧  ,�) has two descendants A(',�) and A( ,�) in an application of (A∧).

Definition 2. Let C be a goal to which a rule r is applicable and let C′ be
one of its subgoals. Furthermore, let Q1�1, resp. Q2�2 with Q1, Q2 ∈ {E, A} and
�1, �2 ⊆ Sub(#) be quantifier-bound blocks occurring in the A- or E-part of C,
resp. C′. We say that Q1�1 is connected to Q2�2 in C and C′, if either

– Q1�1 is principal in r, and Q2�2 is one of its descendants in C′; or
– Q1�1 is not principal in r and Q2�2 is a copy of Q1�1 in C′.

We write this as (C, Q1�1) ↝ (C′, Q2�2). If the rule instance can be inferred from
the context we may also simply write Q1�1 ↝ Q2�2. Additionally, let  , resp.  ′

be a formula occurring in �1, resp. �2. We say that  is connected to  ′ in
(C, Q1�1) and (C′, Q2�2), if either

–  is principal in r, and  ′ is one of its descendants in C′; or
–  is not principal in r and  ′ is a copy of  in C′.

We write this as (C, Q1�1,  ) ↝ (C′, Q2�2,  
′). If the rule instance can be inferred

from the context we may also simply write (Q1�1,  ) ↝ (Q2�2,  
′). A block

connection (C1, Q1�1) ↝ (C2, Q2�2) is called spawning iff Q2 ∈ �1 is principal
and �2 = { }. The only rules that possibly induce a spawning block connection
are (EE), (EA), (AA) and (AE).

Definition 3. Let C0, C1, . . . be an infinite branch of a pre-tableau t for some �.
A trace � in this branch is an infinite sequence Q0�0, Q1�1, . . . s.t. for all i ∈ ℕ:



(Ci, Qi�i) ↝ (Ci+1, Qi+1�i+1). A trace � is called an E-trace, resp. A-trace if
there is an i ∈ ℕ s.t. Qj = E, resp. Qj = A for all j ≥ i. We say that a trace is
finitely spawning if it contains only finitely many spawning block connections.

Lemma 4. Every infinite branch of a pre-tableau contains infinitely many appli-
cations of rules (X0) or (X1).

Proof. Assume by contradiction that there is an infinite branch C0, C1, . . . in
a pre-tableau for some � that contains only finitely many applications of the
modal rules. Note that there must be a trace Q0�0, Q1�1, . . . in the branch that
is principal infinitely often. Now we consider a lexicographic measure on all the
�i that counts how many non-modal formulas of a certain depth are contained
in the block. Note that every rule application except the modal rule decreases
this measure. But this cannot be the case. ⊓⊔

Definition 5. A thread t in a trace � = Q0�0, Q1�1, . . . is an infinite sequence
 0,  1, . . . s.t. for all i ∈ ℕ: (Ci, Qi�i,  i) ↝ (Ci+1, Qi+1�i+1,  i+1). Such a thread
t is called a U-thread, resp. R-thread if there is a formula 'U ∈ Sub(�), resp.
'R ∈ Sub(�) s.t.  j = 'U , resp.  j = 'R for infinitely many j.

An E-trace is called good iff it has no U-thread; similarly, an A-trace is called
good iff it has an R-thread.

This immediately yields the definition of a bad trace: an E-trace is bad if it
contains an U-thread, and an A-trace is bad if it contains no R-thread.

Lemma 6. Every trace in an infinite branch of a pre-tableau is either an A-trace
or an E-trace and only finitely spawning.

Proof. Let � = Q0�0, Q1�1, . . . be a trace and assume by contradiction that
{i ∣ Qi�i ↝ Qi+1�i+1 is spawning} is infinite. Let i0 < i1 < . . . be the ascending
sequence of numbers in this infinite set and let �ij denote the formula in the
singleton set �ij+1. Note that for all j it is the case that �ij+1 ∈ Sub(�ij )
and �ij ∕= �ij+1

, hence the set cannot be infinite. Now note that every finitely
spawning trace eventually must be either an A- or an E-trace. ⊓⊔

Lemma 7. Every thread in a trace of an infinite branch of a pre-tableau is either
an U- or an R-thread.

Proof. Let t =  0,  1, . . . be a thread. Assume that t is neither an U- nor an
R-thread, hence there is a position i∗ s.t.  i is neither of the form  ′U ′′ nor of
the form  ′R ′′ for all i ≥ i∗, hence  i+1 ∈ Sub( i) for all i ≥ i∗. By Lemma 4
it follows that  i+1 ∕=  i for infinitely many i which cannot be the case, hence
t has to be a U- or an R-thread. Finally, assume that t is both an U- and an
R-thread, i.e. there are positions i0 < i1 < i2 s.t.  i0 =  i2 =  ′R ′′ and
 i1 = '′U'′′. Hence  i1 ∈ Sub( i0) ∖ { i0} and  i2 ∈ Sub( i1) ∖ { i1}, thus
 ′R ′′ ∈ Sub( ′R ′′) ∖ { ′R ′′} which cannot be the case. ⊓⊔

Lemma 8. For every U- and every R-thread (in a trace of an infinite branch of
a pre-tableau)  0,  1, . . . there is an i ∈ ℕ such that  i is an U-, or an R-formula
resp., and  j =  i or  j = X i for all j ≥ i.



Proof. For all i ∈ ℕ, it holds that  i+1 ∈ Sub( i), or  i+1 = X i provided that
 i is an U- or an R-formula. The map removing from a formula its frontal X
converts the thread into a chain which is weakly decreasing with respect to the
subformula order. Because this order is well-founded the claim follows. ⊓⊔

Definition 9. A tableau for # is a pre-tableau for # that does not contain a
branch which contains a bad trace.

In other words, all traces in a tableau must be good. Such tableaux exactly
characterise satisfiability of CTL∗ in the sense of the following theorem.

Theorem 10. For all # ∈ CTL∗: # is satisfiable iff there is a tableau for #.

The completeness proof is technically tedious but does not use any heavy
machinery once the right invariants etc. are being found. Given a model for # we
use this to construct a pre-tableau in a certain way. Then assume that the result
is not a tableau and derive a contradiction from it. Soundness can be shown by
collapsing a tableau into a tree-like transition system and verifying that it is
indeed a model of #. The proofs for completeness and soundness are presented in
the appendix.

4 A Decision Procedure for CTL∗

4.1 Using Automata to Recognise Tableau Branches

The main difficulty in deciding the existence of a tableau for a formula ' is the
global condition on infinite branches being required to be good. We propose
to use automata-theory for this. Pre-tableau branches can be represented as
infinite words over a certain alphabet, and we will show that the language of good
branches is recognisable by a nondeterministic Büchi-automaton (NBA). This
is not trivial since a nondeterministic machine cannot easily check for absence
of U-threads in E-traces for instance. However, we can use the nondeterminism
in order to check for violations, i.e. the presence of U-threads in an E-trace
for instance. This then has to be complemented and combined with something
checking for the presence of an R-thread in an A-trace in order to have a device
recognising exactly the set of good paths of a tableau.

The goal is then to replace the global condition on branches of having good
traces by an annotation of the tableau nodes with automaton states and a global
condition on these states. For instance, if the resulting automaton was of Büchi
type, then a tableau can be seen as a pre-tableau with nodes annotated by the
automaton s.t. on every infinite path, infinitely many final states occur.

Now note that the automaton recognising good paths needs to be deterministic:
suppose there are two branches uv and uw with a common prefix u s.t. both
branches are recognised by A. If A is nondeterministic then it may have two
different accepting runs on uv and uw that differ on the common prefix u already.
Remember that an annotation of tableau nodes with a single automaton state is
required. However, this is possible if A is deterministic.



The problem of deciding existence of a tableau then reduces to the problem
of solving a game. Its nodes are pre-tableau nodes annotated with states of the
deterministic automaton. Nondeterministic choices in the tableau rules translate
into choices of the existential player in the game; the branching rules (X0) and
(X1) translate into choices of the universal player. The type of the game is the
same as the type of A. For instance, if A is a deterministic parity automaton
then the game is a parity game.

Here we are particularly interested in Büchi and parity automata [11]. An
NBA is a tuple A = (Q,�, q0, �, F ) with Q being a finite set of states, � a finite
alphabet, q0 ∈ Q an initial state, � ⊆ Q × � × Q the transition relation and
F ⊆ Q a set of final states. A run of A on a a0a1 . . . ∈ �! is an infinite sequence
q0, q1, . . . s.t. (qi, ai, qi+1) ∈ � for all i ∈ ℕ. It is accepting if qi ∈ F for infinitely
many i. The language of the NBA A is L(A) = {w ∣ there is an accepting run of
A on w}. A co-Büchi automaton (NcoBA) is syntactically the same as a NBA.
However, a run q0, q1, . . . of an NcoBA is accepting if it only contains finitely
many non-final states. A parity automaton (NPA) is a tuple A = (Q,�, q0, �, 
)
with Q,�, q0, � as above and 
 : Q→ ℕ assigns to each state a priority. A run
q0, q1, . . . is accepting if max{
(q) ∣ q = qi for infinitely many i ∈ ℕ} is even. The
index of an NPA A is the number of different priorities occurring, i.e. ∣
[Q]∣.

An NBA / NcoBA / NPA with transition relation � is deterministic (DBA /
DcoBA / DPA) if ∣{q′ ∣ (q, a, q′) ∈ �}∣ = 1 for all q ∈ Q and a ∈ �. Determinism
and the duality between Büchi and co-Büchi condition as well as the self-duality
of the parity acceptance condition makes it easy to complement a DcoBA to
a DBA as well as a DPA to a DPA again. The following is a standard and
straight-forward result [11, Sec. 1.2] in the theory of !-word automata.

Lemma 11. For every DcoBA, resp. DPA, A there is a DBA, resp. DPA, A
with L(A) = L(A) and ∣A∣ = ∣A∣.

4.2 Automata for Tableau Branches

We regard rule applications—more precisely: pairs of a goal and one of its subgoals
in one of the tableau rules—in a pre-tableau for a formula ' as symbols of a finite
alphabet. Näıvely, this would yield an alphabet of doubly exponential size since
there are doubly exponentially many different goals. However, note that such a
pair is entirely determined by the principal block and the principal formula of
the goal and a number specifying the subgoal. This enables a smaller symbolic
encoding. For instance, the transition from the goal A(E',�), � to the subgoal
A�,� in rule (AE) would be represented by the quadruple (A, {E'} ∪ �, E', 1).
The other possible premiss would have index 0 instead. There are three exceptions
to this: applications of rules (Ett) and (X0) can be represented using a constant
name, and the premiss in rule (X1) is entirely determined by one of the E-blocks
in the subgoal. Hence, let

�br
' := ({A, E} × 2Sub(') × Sub(')× {0, 1}) ∪ {0, 1} ∪ 2Sub(')

Note that ∣�br
' ∣ = 2O(∣'∣).



An infinite branch � = C0, C1, . . . in a pre-tableau for ' then induces a
word �′ = r0, r1, . . . ∈ (�br

' )! in a straight-forward way: ri is the symbolic
representation of the goal/subgoal pair (Ci, Ci+1). We will not distinguish formally
between an infinite branch � and its induced !-word �′ over �br

' .
Remember that we want to define an NBA which accepts exactly those

branches which are not good, i.e. which either contain an E-trace with an U-
thread or an A-trace with no R-thread. Nondeterminism can be used in order to
guess the trace in the branch, and it can also be used in order to guess an U-thread
in an E-trace. However, it is not necessarily useful for showing that no R-thread
exists in an A-trace. We therefore use complementation for this subproblem again.

An A-trace-marked branch is a pre-tableau branch in which a single A-trace
is marked. It can be represented as an infinite word over the alphabet �tmb

' =

�br
' × 2Sub('). The second component of the alphabet simply names the set

of subformulas which form the current A-block on the marked trace. Then
we define a co-Büchi automaton C' which recognises exactly those A-trace-
marked branches which contain an R-thread in the marked trace. It is C' =
({W, F}∪Sub('), �tmb

' , W, �, F ) with F = Sub('). We define the transition relation �
by intuitively describing its behaviour. Starting in the waiting state W it guesses
a formula of the form  1R 2 which occurs in the marked A-trace. It then tracks
this formula in its state for as long as it is unfolded with rule (AR) and remains
in the marked trace. If it leaves the marked trace then C' moves into the failure
state F. The following proposition is easily seen to be true.

Lemma 12. Let w ∈ (�tmb
' )! be an A-trace-marked branch of a pre-tableau for '.

Then w ∈ ℒ(C') iff the marked trace of w contains a R-thread.

Remember that we are interested in branches whose A-traces do not contain R-
threads. Hence, we need complementation. Luckily, an NcoBA can be determinised
into a DcoBA using the Miyano-Hayashi construction [14] which can easily be
complemented into a DBA according to Lemma 11.

Theorem 13 ([14]). For every NcoBA A with n states there is a DBA A with
at most 3n states s.t. L(A) = L(A).

Equally, we can define an E-trace-marked branch as a word over �tmb
' and

an NcoBA ℬ' which accepts exactly those which contain an U-thread in the
marked E-trace. It is ℬ' := ({W, F} ∪ Sub('), �tmb

' , W, �, F ) with F = Sub('). Its
behaviour is almost the same as that of C' with the difference that it tracks an
U-formula in its state component rather than an R-formula.

Lemma 14. Let w ∈ (�tmb
' )! be an E-trace-marked branch of a pre-tableau for '.

Then w ∈ ℒ(ℬ') iff the marked trace of w contains an U-thread.

Then we can define an NBA A' that accepts exactly those branches which
contain a bad trace. Let C' = (QC , �tmb

' , qC0 , �
C , F C) be the DBA obtained from

C' using the complementation construction of Thm. 13, and ℬ' = (Qℬ, �tmb
' , qℬ0 ,

�ℬ, Fℬ). Then define A' := (Q,�br
' , W, �, F ) where Q = {W, F} ∪ 2Sub(')×

(
QC ∪̇



Qℬ
)
. Again, we describe its behaviour informally. It starts in the waiting state

W. At some point it guesses a block that is contained in the given alphabet
symbol and tracks this block in the first component of its state space in order to
check that it is a non-spawing trace. Depending on whether or not it is an A- or
E-block it simulates in its second component the automaton C', resp. ℬ' on the
letters which are composed of the input letter and the first component. Thus, it
effectively guesses a trace and simulates one of the two automata on the branch
in which this trace is marked. If the trace disappears using rule (Ett) for instance,
it moves to the failure state F. Its accepting states F are 2Sub(') × (F C ∪̇ Fℬ).
The following is not too difficult to see using Lem. 12 and 14 as well as Thm. 13.

Lemma 15. Let w ∈ (�br
' )! be a branch of a pre-tableau for '. Then w ∈ ℒ(A')

iff w contains a trace which is not good.

Furthermore, a close inspection of the constructions together which Thm. 13
yields the following estimation on the size of A'. Note that the initial waiting
states of C' and ℬ' are redundant since waiting is also done in the initial state
of A'.

Proposition 16. The number of states of A' is bounded by 2 + 2∣'∣ ⋅ (3∣'∣+2 ⋅
(∣'∣+ 2)) ≤ 2O(∣'∣).

Finally, remember that we need a deterministic automaton recognising the
complement of the language recognised by A'. Luckily, there are determinisation
constructions for Büchi automata. We are particularly interested in those that
yield parity automata [15, 12, 20].

Theorem 17 ([15]). For every NBA with n states there is an equivalent DPA
with at most n2n+2 states and index at most 2n− 1.

Together with Lemma 11 we obtain a DPA A' which accepts exactly those

branches containing good traces only, and has size 22
O(∣'∣)

and index 2O(∣'∣).

4.3 The Reduction to Parity Games

The problem of deciding the existence of a tableau can easily be phrased as a
game: starting with the initial goal E', the proponent chooses a rule instance that
can be applied to the current goal, and the opponent chooses a subgoal whenever
the instance is a branching rule. Note this is only the case for the modal rules.
This yields a pre-tableau branch in the limit. The proponent wins iff all traces
on this branch are good, otherwise the opponent wins. Clearly, there is a tableau
for ' iff the proponent has a winning strategy in this game. We will now use the
automata-theoretic machinery of the previous subsection in order to formalise
this game and present a reduction of the satisfiability problem for CTL∗ to the
problem of solving a parity game.

A parity game is a G = (V, V0, V1, v0, E,
) s.t. (V,E) is a finite, directed
graph with total edge relation E, V0, V1 is a partition of the node set V into



nodes owned by player 0 and 1, resp., v0 ∈ V is a designated starting node, and

 : V → ℕ assigns priorities to the nodes. A play is an infinite sequence v0, v1, . . .
starting in v0 s.t. (vi, vi+1) ∈ E for all i ∈ ℕ. It is won by player 0 if max{
(v) ∣
v = vi for infinitely many i} is even. A (non-positional) strategy for player i
is a function � : V ∗Vi → V , s.t. for all sequences v0 . . . vn with (vj , vj+1) ∈ E
for all j = 0, . . . , n − 1, and all vn ∈ Vi we have: (vn, �(v0 . . . vn)) ∈ E. A play
v0v1 . . . conforms to a strategy � for player i if for all j ∈ ℕ we have: if vj ∈ Vi
then vj+1 = �(v0 . . . vj). A strategy � for player i is a winning strategy in node
v if player i wins every play that begins in v and conforms to �. A (positional)
strategy for player i is a strategy � for player i s.t. for all v0 . . . vn ∈ V ∗Vi and all
w0 . . . wm ∈ V ∗Vi we have: if vn = wm then �(v0 . . . vn) = �(w0 . . . wm). Hence,
we can identify positional strategies with � : Vi → V . It is a well-known fact
that for every node v ∈ V , there is a winning strategy for either player 0 or
player 1 for node v. In fact, parity games enjoy positional determinancy meaning
that there is even a positional winning strategy for node v for one of the two
player [2]. The problem of solving a parity game is to determine which player
has a winning strategy for v0. It is solvable [19] in time polynomial in ∣V ∣ and
exponential in ∣
[V ]∣.

Definition 18. Let ' be a state formula and A' = (Q,�br
' , q0, �, 
) be the DPA

according to the previous subsection which recognises good branches in pre-tableaux
for '. The satisfiability game for ' is a parity game G' = (V, V0, V1, v0, E,


′)
defined as follows.

– V := Seq(')×Q
– V1 := {(C, q) ∈ V ∣ rule (X0) or (X1) applies to C}
– V0 := V ∖ V1
– v0 := (E', q0)
– ((C, q), (C ′, q′)) ∈ E iff (C,C ′) is an instance of a rule application which is

symbolically represented by r ∈ �br
' and q′ = �(q, r), or no rule is applicable

to C and C = C ′ and q = q′,

– 
′(C, q) :=

⎧⎨⎩
0 if C is a consistent set of literals


(q) if there is a rule applicable to C

1 otherwise

The following theorem states correctness of this construction. It is not difficult
to prove. In fact, a winning strategy for player 0 is basically a finite representation
of an infinite tableau.

Theorem 19. Player 0 wins G' iff there is a tableau for '.

Proof. Assume that player 0 wins G' with a positional winning strategy �.
Unfolding the game G' starting with v∗ and conforming to � results in a possibly
infinite tree that can be easily transformed into a pre-tableau P for ' by removing
all annotations of the branch-checking automaton and by replacing all consistent-
set-loops with consistent-set-leafs. Note that it is impossible that a finite branch
does not end in a consistent set with player 0 winning from v∗. Given an arbitrary



infinite branch � in P , it holds that � ∈ ℒ(A'), hence by Lemma 15 it follows
that � contains no bad trace. Consequently, P is a tableau.

For the other direction, let P be a tableau for '. Starting with v∗, every goal
in P can be labeled with the corresponding game state; then, every player 0
position of G' corresponding to a node in the labeled version of P can be used
as a non-positional strategy decision for player 0. The player 0 strategy obtained
in that manner is indeed a winning strategy for player 0 starting in v∗: let � be
an arbitrary play conforming to the strategy; if � is finite, it must correspond to
a branch in P that ends in a consistent set of literals, hence it is won by player
0, otherwise the branch corresponding to � contains only good traces, and hence
by Lemma 15 it follows that � is won by player 0. ⊓⊔

The proofs of the following corollaries are given in the appendix.

Corollary 20. Deciding existence of a tableau for some ' is in 2EXPTIME.

Corollary 21. Any satisfiable CTL∗ formula ' has a model of size at most

22
O(∣'∣)

and branching-width at most 2∣'∣.

5 Comparison with Existing Methods

We briefly compare the tableau/automata-based reduction to parity games with
existing decision procedures for CTL∗, namely Emerson/Jutla’s tree automata [5],
Reynolds’ proof system [17], Gabbay/Pnueli’s proof system [9], and Reynolds’
tableaux [18].

Emerson/Jutla’s procedure transforms a CTL∗ ' formula in some normal
form into a tree-automaton recognising exactly the tree-unfoldings of fixed bran-
ching-width of all models of '. This uses a translation of linear-time formulas
into Büchi automata and then into deterministic (Rabin) automata for the same
reasons as outlined above. This has a drawback, as Emerson [3, Sec. 6.5] notes
himself: “. . . due to the delicate combinatorial constructions involved, there is
usually no clear relationship between the structure of the automaton and the
candidate formula.”

Note that our approach does not use tree-automata as such—even though
one may argue that the constructed parity games represent tree automata.
However, the crucial difference is the separation between the use of tableau-
machinery for the characterisation of satisfiability in CTL∗ and the use of
automata-machinery only in order to obtain a decision procedure. In particular,
we do not need translations of linear-time temporal formula into !-word automata.
The relationship between input formula and resulting structure (here: game) is
given by the tableau rules. Furthermore, this separation makes a huge difference
in practice, as we believe, because it allows the branching-width of models of '
to be flexible. Note that this is given by the number of premisses of rule (X1),
whereas in Emerson/Jutla’s approach it is fixed a priori to a number which is
linear in the size of the input formula. While this does not increase the asymptotic
worst-case complexity, it does have an effect on the efficiency in practice. Not



surprisingly, we do not know of any attempt to implement the tree-automata
approach.

Reynolds’ proof system is an approach at giving a sound and complete finite
axiomatisation for CTL∗. Its proof of correctness is rather intricate and the
system itself is useless for practical purposes since it uses a second-order rule and
it is therefore not even clear how a decision procedure, i.e. proof search could
be done. In comparison, our calculus has the subformula property and comes
with an implementable decision procedure. The only price to pay for this is the
characterisation of satisfiability through infinite objects instead.

Gabbay/Pnueli’s proof system is a unifying approach to compositional model
checking and validity checking. Their work focuses on obtaining a sound and
complete system. It is not clear whether this could be used in practice and we
also do not know of any implementation based on that calculus. Also, the system
is only complete for a special model of reactive systems in which path quantifiers
are implicitly relativised.

Reynold’s recent tableau system shares some similarities with our tableau
system. He also uses sets of sets of formulas as well as traces (which he calls
threads), etc. Even though his tableaux are finite, the difference in this respect is
marginal. Finiteness is obtained through looping back, i.e. those branches might
be called infinite as well. One of the real differences between the two systems
lies in the way that the semantics of the CTL∗ operators shows up. In Reynolds’
system it translates into technical requirements on nodes in the tableaux, whereas
our system comes with relatively straight-forward tableau rules. The other main
difference is the loop-check. Reynolds says that “. . . we are only able to give some
preliminary results on mechanisms for tackling repetition. [. . . ] The task of making
a quick and more generally usable repetition checker will be left to be advanced and
presented at a later date.” Our method comes with a non-trivial repetition checker:
it is given by the annotated automata. Finally, Reynolds reports of a prototype
implementation of his tableau decision procedure [18]. This implementation is,
however, not publicly available, and tests are only performed on single short
formulas such that no asymptotic behaviour can be inferred from those results.
We strongly believe that this implementation is greatly outperformed by ours. For
example, the formula AG(EXp∧ EX¬p)∧ AG(Gp∨ (¬r)U(r ∧¬p)) apparently cannot
be checked for satisfiability by Reynolds’ implementation anymore whereas ours
takes 0.04s for this task.

6 An Implementation

We report on practical aspects of the decision procedure described above. As
said in the introduction, it is implemented in the MLSolver tool, a framework
for solving satisfiability and validity problems of modal fixpoint logics. It reduces
such problems to parity games and then uses PGSolver, a high-performance
solver for parity games. Both tools are publicly available1.

1 http://www.tcs.ifi.lmu.de/{mlsolver,pgsolver}



Optimisations. (1) It is possible to partially determinise the proponent’s strategy
without compromising on soundness or completeness: except for the modal rules
(X0) and (X1), it is not important which rule is to be applied next. Instead of
allowing the proponent to choose the rule we use a function which determines for
each goal the rule that has to be applied to it next. This leaves the proponent
with the choices of the disjuncts to be preserved in the current goal in rules (Al),
(AA), (AE), (E∨), (EU), and (ER) and reduces the out-degree of the resulting parity
games.

(2) MLSolver allows parity games to be generated in compact mode. This
means that not every pair of pre-tableau goal and automaton state is present
in the game. Instead, the game only contains those pairs in which rule (X0) or
(X1) applies to the pre-tableau goal. This is possible because CTL∗ formulas are
guarded in the sense that every infinite pre-tableau path must contain infinitely
many applications of one of these rules. Compact mode does not only create
much smaller games, they are also often generated faster because loop-checks do
not need to be performed for every newly generated pair.

(3) MLSolver is able to perform literal propagation in each step of the
creation of a pre-tableau. This means that whenever a literal becomes top-level
in a goal, its other occurrences which are not under the scope of a temporal
operator are replaced by tt. Equally, all such occurrences of the complement
literal are replaced by ff. The resulting goal can be simplified according to the
usual rules for boolean operations and then provide less disjunctive choices or
allow to detect inconsistencies earlier.

(4) MLSolver prefers large formulas as principals. This scheduling reduces
the branching width to linear—in contrast to the general case, cf. Cor. 21. A
proof is given in the appendix.

(5) Finally, PGSolver contains implementations of basically all known
algorithms for solving parity games. While some of them are consistently bad in
practice, there are some which perform quite well even though none of them is
always best. These are furthermore aided by modules performing simplifications
on the parity games which speed up the solving. The running times reported
below are obtained using the solving algorithm which is best on the respective
instance—usually the one by Stevens and Stirling [21].

Benchmarks. (1) We consider two simple families of formulas that feature deep
nestings of modal operators. Let �0 := q, �n+1 := AFG�n, �0 := q, �n+1 :=
AFAG�n,  n := �n → �n, and 'n := �n → �n for n ≥ 0. Both families are
checked for validity, but note that  n is falsifiable whereas 'n is valid. Thus,
there is a tableau for ¬ n but none for ¬'n.

(2) We consider n+ 1 programs 0, . . . , n. A proposition pi states whether or
not the program i is running. A scheduler is assumed which guarantees that at
any time at least one program is running, and that each program runs infinitely
often. Then for any execution sequence and at any time, if program 0 is running
then the programs 1 to n will run in this order but possibly interrupted by others.
The hole setting is given by the formula (AG(

⋁
i pi) ∧

⋀
i AGFpi) → AG(p0 → �1)

where �i = F(pi ∧ �i+1) and �n+1 = tt.
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3 12, 320 30.82s
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1 49 0.12s
�n 2 7, 213 328.15s

3 ? †

�n
1 49 0.12s
2 ? †

Fig. 2. Runtime results.

(3) The formula �(', , '′,  ′) := (' ∧ AG('→ EX( U'))) → EG( ′U'′) is
a variation of the limit closure property, and is a tautology if '′ is a consequence
of ' and  ′ of  . Its iterations serve as benchmarks, that are

�0 := q → q and �n+1 := �(p, ', p, '′) where '→ '′ = �n, and

�0 := p→ p and �n+1 := �(', q, '′, q) where '→ '′ = �n.

Experimental Results. All tests have been carried out on a 64-bit machine with
four quad-core OpteronTM CPUs and 128 GB RAM space. The implementation
does not (yet) support parallel computations, hence, each test runs on one core
only and needed less than 4 GB RAM. We only present instances of non-negligible
running times. On the other hand, the solving of larger instances not presented
in Fig. 2 anymore has experienced time-outs after one hour, marked †.

7 Further Work

The results of the previous section show that the tableau/automata approach to
deciding CTL∗ is reasonably viable in practice. Note that the implementation
so far only features optimisations on one of three fronts: it uses the latest and
optimised technology for solving the resulting games. However, there are two more
fronts for optimisations which have not been exploited so far. The main advantage
of this approach is—as we believe—the combination of tableau-, automata- and
game-machinery and therefore the possible benefit from optimisation techniques
in any of these areas. It remains to be seen for instance whether the automaton
determinisation procedure can be improved or replaced by a better one. Also, the
tableau community has been extremely successful in speeding up tableau-based
procedures using various optimisations. It also remains to be seen how those can
be incorporated in the combined method.

Furthermore, it remains to expand this work to extensions of CTL∗, for
example CTL∗ with past operators, multi-agent logics based on CTL∗, etc.
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11. E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and Infinite
Games, LNCS. Springer, 2002.

12. D. Kähler and Th. Wilke. Complementation, disambiguation, and determinization
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A Soundness

Theorem 22 (Soundness). Let P a tableau for # ∈ CTL∗. Then # is satisfi-
able.

Proof. Let V be the nodes in P , and S those nodes which are leaves or which
are conclusions of the rules (X0) or (X1). Let ŝ : V → S be the function which
points a node v to its oldest descendants—including v—in S. Since all rules are
unary besides (X1), Lemma 4 ensures that the function ŝ is well-defined. For r
being the root of P , we set s★ := ŝ(r). Moreover, the infix relation → ∈ S × S is
defined as {(s, ŝ(t)) ∣ t is a child of s in P} ∪ {(s, s) ∣ s is a leaf in P}.

The tableau induces the transition system T# = (S, s★,→, ℓ) such that ℓ(s) =
C ∩ P for any s ∈ S labeled with a goal C. Note that T# is total. In the following,
we omit the transition system T# in the context of “∣=”. Moreover, we identify a
node with its annotated goal.

We claim that T#, s★ ∣= #. For the sake of a contradiction, assume that this is
not the case. We will show that the tableau has a branch which contains a bad
trace. For this purpose, we construct a trace � = (Qi�i)i∈ℕ in a branch (Ci)i∈ℕ
of P and a partial sequence �i of paths in T# such that the following properties
hold for all i ∈ ℕ.

(1) C0 is the root of P , and Ci+1 is a child of Ci.
(2) Qi�i ∈ Ci.
(3) (Ci, Qi�i) ↝ (Ci+1, Qi+1�i+1).

(4) If Qi = E then ŝ(Ci) ∕∣= E(
⋀
∈�i

).

(5) If Qi = A then �i is defined, ŝ(Ci) = �i(0), and �i ∕∣=
⋁
∈�i

.

(6) If Qi = Qi+1 = A, and C is an instance of (X0) or (X1) then �i+1 = �1
i .

(7) If Qi = Qi+1 = A, and C is an instance of neither (X0) nor (X1) then �i+1 = �i.

(8) If Qi�i = A('R ,�), if Ci is the conclusion of (AR) such that 'R and Qi�i
are principal, and if Qi+1�i+1 = A(', X('R ), �) then �i ∣=  .

The construction of such a trace is straight forward. We detail the proof for
some cases, and thereto use formulas and notations as shown in Fig. ??. As for
the rule (EA), if ŝ(Ci) ∕∣= E(A' ∧

⋀
∈� ) then ŝ(Ci) ∕∣= A' or ŝ(Ci) ∕∣= E(

⋀
∈� ).

In the first case the trace is continued with E�. Otherwise, Qi+1�i+1 = A' and
�i+1 is an arbitrary path in T# which starts at ŝ(Ci) = ŝ(Ci+1) and which fulfills
�i+1 ∕∣= '. As for the rule (AR), we have �i ∕∣= 'R ∨

⋁
∈� . Using that �i = �i+1

and an unrolling of the R-operator, �i+1 ∕∣=  or �i+1 ∕∣= ' ∨ X('R ). In the first
case the trace is continued with A( ,�), and with A(', X('R ), �) otherwise. As
for case of (X0) and (X1), the constraints determine the successor uniquely.

Back to the main proof, � is either an E- or an A-trace, by Lemma 6.

Case: � is an E-trace. We show that � is a bad trace by revealing an U-
thread in �. Let i★ ∈ ℕ such that Qi = E, for all i ≥ i★. By � we denote the
subsequence of the branch (Ci)i≥i★ which consists of nodes in S only. For a



node C in the branch, we write �C to denote the subsequence of � starting at
ŝ(C). A simple case distinction on the used rule yields the following property.

Let i ≥ i★, and let  ∈ �i with �Ci ∕∣= . Then there exists a ′ ∈ �i+1

such that (Ci, Qi�i, ) ↝ (Ci+1, Qi+1�i+1, 
′) and �Ci+1 ∕∣= ′.

}
(†)

By the property (4), there is a  ∈ �i★ such that �ŝ(Ci★ ) ∕∣= . Using previous
property (†), any connected finite sequence of formulas starting with  can
be expanded ad infinitum. However, there is a certain degree of freedom.
Recall that any such connected infinite sequence of formulas is a thread. Fix
such a thread � = (�i)i≥i★ starting at  with the following property: For any
i ≥ i★, if Ci is the conclusion of the rule (ER) such that Qi�i and �i = 'R 
are principal, and if �Ci ∕∣=  then �i+1 =  .
By Lemma 7, � is either an U- or an R-thread. In the first case, we are done as
� witnesses that the considered branch contains � as bad trace. So, suppose
for the sake of a contradiction that � is an R-thread.
By Lemma 8, there are i★★ ≥ i★ and ', ∈ Sub(#) such that �i = 'R or
�i = X('R ) for all i ≥ i★★. Along the branch (Ci)i≥i★★ , between any two
consecutive applications of the rules (X0) or (X1), the rule (ER) must have
been applied such that �i = 'R and Qi�i are principal for some i ≥ i★★. By
the definition of a thread and choice of i★★, the following element, Qi+1�i+1,
of the trace is E( , X('R ), �) for some � ⊆ Sub(#). By choice of �, we have
�Ci ∣=  and �i+1 = X('R ). Since this is true for any such two consecutive
applications, �Ci ∣=  for all i ≥ i★★. Therefore, �Ci★★ also models 'R and
X('R ), in particular. But, this is a contradiction to the choice of i★★ and
the construction of �.

Case: � is an A-trace. We show that � is a bad trace. Suppose for the sake
of a contradiction that � contains an R-thread (�i)i∈ℕ. Let i★ ∈ ℕ and
', ∈ Sub(#) such that Qi = A, and �i = 'R or �i = X('R ) for all i ≥ i★,
cf. Lemma 8.
Along the branch (Ci)i≥i★ , between any two consecutive applications of the
rules (X0) or (X1), the rule (AR) must have been applied such that �i = 'R 
and Qi�i are principal for some i ∈ ℕ. By the definition of a thread and
choice of i★, the following element, Qi+1�i+1, of the trace is A(', X('R ), �)
for some � ⊆ Sub(#). Hence, thanks to (8) we have �i ∣=  . Because the
block quantifier remains A, the properties (6) and (7) yield that �ji★ ∣=  
for all j ∈ ℕ. Therefore, �i★ ∣= 'R and �i★ ∣= X('R ) hold. But this is
a contradiction to (5). Thus, the considered branch contains � as a bad
trace. ⊓⊔

B Completeness

In order to show completeness, we need to assume a fixed well-ordering on the
states of a model of some '. Such an ordering trivially exists for finite models,
and it is well-known that CTL∗ has the finite model property. However, using
this result is cheating because the finite model property usually follows from



completeness and soundness of a system. However, it should be clear that such
an ordering always exists for a model of countable size. Furthermore, CTL∗

can be embedded into least fixpoint logic LFP via a translation to the modal
�-calculus [1], and LFP possesses the Löwenheim-Skolem property, i.e. every
satisfiable LFP formula has a countable model [10].

For any transition system T = (S, s∗,→, �) let ≺T denote an arbitrary but
fixed well-ordering on S. We extend ≺T to a well-ordering ⊲T on paths over S
as follows: � ⊲T �

′ holds iff there is an i s.t. �(i) ≺T �′(i) and for each j < i it
holds that �(j) = �′(j). It is well-known that the lexicographical extension of
well-orderings to infinite sequences is again a well-ordering.

Lemma 23. Given a transition system T , the relation ⊲T is a well-ordering on
paths over S.

Let T = (S, s∗,→, �) be a transition system, s ∈ S be a state and  be a
formula s.t. s ∣= E . The minimal s-rooted path that satisfies  is denoted by
�T (s,  ) and fulfills the following properties: �T (s,  )(0) = s, �T (s,  ) ∣=  and
there is no path � with � ⊲T �T (s,  ) and �(0) = s s.t. � ∣=  .

A T -labeled (pre-)tableau is a (pre-)tableau with every goal being labeled
with a state s.t. the root is labeled with s∗, and for every s-labeled goal and
every s′-labeled immediate subgoal it holds that s→ s′ if the corresponding rule
application is (X1) or (X0) and s = s′ otherwise.

Theorem 24 (Completeness). Let # ∈ CTL∗ be satisfiable. Then there is a
tableau for #.

Proof. Let # be a formula and T = (S, s∗,→, �) be a transition system and
s∗ ∈ S be a state s.t. s∗ ∣= E#.

We inductively construct a T -labeled pre-tableau as follows. Starting with the
labeled sequence s∗ : E#, we apply the rules in an arbitrary but eligible ordering
systematically backwards by preserving s ∣= � for every state-labeled goal s : �
as well as the following additional properties.

1. If the rule application to follow � is (Al), (AE) or (AA), with A( , � ) being
the principal block in � and  being the principal (state) formula, and s ∣=  ,
then the immediate subgoal of � follows  and discards the original A-block.

2. If the rule application to follow � is (EU), with E('U ,�) being the principal
block in � and 'U being the principal formula, and �T (s, ('U ,�)) ∣=  ,
then the immediate subgoal of � follows  (instead of ' and X('U )).

3. If the rule application to follow � is (ER), with E('R ,�) being the principal
block in � and 'R being the principal formula, and �T (s, ('R ,�)) ∣= ',
then the immediate subgoal of � follows  ,' (instead of  , X('R )).

4. If the rule application to follow � is (E∨), with E( 1∨ 2, �) being the principal
block in � and  1∨ 2 being the principal formula, and �T (s, ( 1∨ 2, �)) ∣=
 i for some i ∈ {1, 2}, then the immediate subgoal of � follows  i.

5. If the rule application to follow � is (X1), with subgoals s1 : E�1, �1,. . .
sk : E�k, �k, then �T (s, X�i)(1) = si for every 1 ≤ i ≤ k.



Consider that this construction indeed yields a pre-tableau with each state-
labeled sequence s : � satisfying all side conditions. Moreover note that every
finite branch ends in a node labeled with consistent literals only.

By contradiction assume that the pre-tableau is not a tableau, hence there
is a labeled branch s0 : �0,s1 : �1,. . . (with �0 = E#) containing a bad trace
B0, B1, . . .. We define a lift operation î that selects the next modal rule application
as follows.

î := min{j ≥ i ∣ �j is the goal of an application of (X1) or (X0)}

Due to Lemma 4, î is well-defined for every i.
Additionally, we define the modal distance �(i, j) := ∣{i ≤ k ≤ j ∣ k = k̂}∣ as

well that counts the number of modal rule application between i and j. Every
i induces a generic path �i by �i : j 7→ smin{k∣�(i,k)=j} and note �i indeed is
well-defined for every i.

By Lemma 6, the bad trace is either an A- or an E-trace that is eventually
not spawning, i.e. there is a position i∗ s.t. Bj ≡ E�j or Bj ≡ A�j for all j ≥ i∗
with (Bj , Bj+1) being not spawning. Let i∗ be the least of such kind.

Next, we use the bad trace to find an U-thread in it that is satisfied by the
transition system.

For the purpose of finding the thread, we construct an infinite sequence of
formulas �i∗ , �i∗+1, . . . s.t. the following holds for all i ≥ i∗:

a. �i ∈ Bi and �i ∣= �i,
b. (Bi, �i) ↝ (Bi+1, �i+1),
c. �i = '1U'2 for some '1, '2 and �i ∕= �i+1 s.t. �i ∣= '2 implies that �i+1 =
'2.

Additionally, �i = '1U'2 for infinitely many i ≥ i∗ and some '1, '2.

Case: B0, B1, . . . is an E-trace. If the trace is a bad E-trace, it follows by defi-
nition of good traces that there is a U-thread continuing with �i∗ ,�i∗+1,. . . in
the trace fulfilling all these properties by construction.

Case: B0, B1, . . . is an A-trace. Since i∗ is the least s.t. Bj = A�j for all j ≥ i∗,
�i∗ has to be a singleton, hence define �i∗ to be the single formula in �i∗ .
For i↝ i+ 1, we apply a case distinction on whether î = i.
If î = i, i.e. the modal rule is to be applied next, �i = X(�′i); simply set
�i+1 := �′i. Otherwise, assume that î ∕= i. If Bi is not principal in the rule
instance set �i+1 := �i. Otherwise, we apply a case distinction on whether �i
is principal. If this is not the case, we simply set �i+1 := �i; by construction,
�i+1 Bi is not spawning. Otherwise, if �i is the principal formula, we apply
a case distinction on the rule instance. Note that �i is not of the form E ′,
A ′ or ℓ by construction.
If �i =  1R 2 let �i+1 be one of the successors  ′ of �i contained in Bi+1

with �i ∣=  ′ and note that there is at least one. If �i =  1U 2 set �i+1 :=  2

iff �i ∣=  2 and �i+1 :=  ′ to the other successor  ′ of �i in Bi+1 otherwise.
Otherwise, �i =  1 ∧  2 or �i =  1 ∨  2. Set �i+1 :=  k s.t.  k is connected
to �i in Bi+1 and �i ∣=  k.



By definition of bad traces, �i∗ , �i∗+1, . . . has to be the continuation of an
U-thread.

Finally, we apply the definition of approximants on the obtained thread in
order to show that it is impossible that the transition system satisfies the thread
the whole time.

Let A = {i ≥ i∗ ∣ �i = X('1U'2) and �i+1 = '1U'2} and note that A is
infinite due to Lemma 4 and the fact that �i = '1U'2 for infinitely many i ≥ i∗.
Let i0 < i1 < . . . denote the ascending sequence of all i ∈ A. Additionally note
that between two ij < ij+1 there is exactly one application of the (X1) or (X0)
rule due to Lemma 8.

Since �i0 ∣= X('1U'2) it follows that is a k s.t. �i0 ∣=k '2, hence particularly
�ik+1

∣= '2. By construction, �ik+1+1 = '2, but by definition of A, it follows that
�ik+1+1 = '1U'2 which cannot be the case. ⊓⊔

C Corollaries

Proof (of Corollary 20). The number of states and edges in G' is 22O(∣'∣)
, and

its index is 2O(∣'∣). It is known that parity games of size m and index k can be
solved in time mO(k) [19] from which the claim follows immediately. ⊓⊔

Proof (of Corollary 21). Suppose ' is satisfiable. According to Thm. 10 it has a
tableau, and according to Thm. 19 player 0 has a winning strategy for the game
G'. It is well-known that he then also has a positional winning strategy, and
another model of ' can be obtained from the subgraph induced by this strategy.
Clearly, this subgraph and therefore the model can be at most as large as the
parity game itself. The upper-bound on the branching-width is given by the fact
that rule (X1) can have at most 2∣'∣ many premisses. ⊓⊔

D Linearly bounded branching width

Cor. 21 yield to an exponential branching-width in general. However, this degree
can be reduced to a linear one by restricting the rule applications—as announced
in Sect. 6. The following argumentation implicitly excludes the rules (X0) and (X1).
Therefore, any considered rule application has exactly one principal formula.

We limit the application of every rule besides (X0) and (X1) to those appli-
cations where the principal formula is a largest formula among those formulas
in the goal which have not X as their outermost connectives. The restriction is
sound because any rule decomposes the principal formula, say ', into smaller
ones—excluding X'—, and because any two immediately rule application besides
of (X0) and of (X1) can be swapped—including their principal formulas. Thereby
the formerly first rule might be duplicated or be erased.

As a measure of a goal we take the number of its E-blocks plus the number
of formulas having the form E' such that this formula is a subformula, but not
under the scope of an X-connective, of some formula in the goal and such that



E{'} is not a block in this goal. This measure is bounded by ∣#∣+ 1 at the initial
goal E{#} and at any premise of the rules (X0) and (X1).

The size restriction ensures that any rule instance besides (X0) and (X1)
weakly decreases the measure. First, we consider the contribution of formulas
to the measure. An inspection of the rules yields that any subformula E' which
contributes to the measure of the premise also occurs in the conclusion as a
subformula. For the sake of contradiction, assume that E' does not contribute
to the measure of the conclusion. Hence, the principal block is preventing E'
from being counted and, hence, it has the shape E{'}. Therefore, the formula
which hosts E' is larger than the principal. But this situation contradicts the
size restriction.

Since the rules besides (EE) and (AE) do not produce any new E-block we are
done with these rules. For the two remaining cases the names as shown in Fig. ??
are used. If E' is excluded from the measure of the conclusion then and only
then E{'} is a block in �. Therefore, in the positive case this block is not new
for the premise. And in the negative case the new block in the premise is paid by
the formula in the conclusion and prevents other instances of this formula in the
premise from being counted.


