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Abstract. Checking whether one formal language is included in another
is vital to many verification tasks. In this paper, we provide solutions for
checking the inclusion of the languages given by visibly pushdown au-
tomata, over both finite and infinite words. Visibly pushdown automata
are a richer automaton model than the classical finite-state automata,
which allows one, e.g., to reason about the nesting of procedure calls in
the executions of recursive imperative programs. The highlight of our
solutions is that they do not comprise automata constructions for deter-
minization and complementation. Instead, our solutions are more direct
and generalize the so-called Ramsey-based inclusion-checking algorithms,
which apply to classical finite-state automata and proved effective there,
to visibly pushdown automata. We also experimentally evaluate our al-
gorithms thereby demonstrating the virtues of avoiding determinization
and complementation constructions.

1 Introduction

Various verification tasks can be stated more or less directly as inclusion problems
of formal languages or comprise inclusion problems as subtasks. For example, the
model-checking problem of non-terminating finite-state systems with respect to
trace properties boils down to the question whether the inclusion L(A) ⊆ L(B)
for two Büchi automata A and B holds, where A describes the traces of the sys-
tem and B the property [21]. Another application of checking language inclusion
for Büchi automata appears in size-change termination analysis [13,18]. Inclusion
problems are in general difficult. For Büchi automata it is PSPACE-complete.

From the closure properties of the class of ω-regular languages, i.e., those
languages that are recognizable by Büchi automata it is obvious that questions
like the one above for model checking non-terminating finite-state systems can
be effectively reduced to an emptiness question, namely, L(A)∩L(C) = ∅, where
C is a Büchi automaton that accepts the complement of B. Building a Büchi
automaton for the intersection of the languages and checking its emptiness is
fairly easy: the automaton accepting the intersection can be quadratically bigger,
the emptiness problem is NLOGSPACE-complete, and it admits efficient imple-
mentations, e.g., by a nested depth-first search. However, complementing Büchi
automata is challenging. One intuitive reason for this is that not every Büchi
automaton has an equivalent deterministic counterpart. Switching to a richer
acceptance condition like the parity condition so that determinization would
be possible is currently not an option in practice. The known determinization
constructions for richer acceptance conditions are intricate, although comple-
mentation would then be easy by dualizing the acceptance condition. A lower
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bound on the complementation problem with respect to the automaton size is
2Ω(n logn). Known constructions for complementing Büchi automata that match
this lower bound are also intricate. As a matter of fact, all attempts so far that
explicitly construct the automaton C from B scale poorly. Often, the implemen-
tations produce automata for the complement language that are huge, or they
even fail to produce an output at all in reasonable time and space if the input
automaton has more than 20 states, see, e.g., [5, 20].

Other approaches for checking the inclusion of the languages given by Büchi
automata or solving the closely related but simpler universality problem for
Büchi automata have recently gained considerable attention [1,2,8–10,13,14,18].
In the worst case, these algorithms have exponential running times, which are
often worse than the 2Ω(n logn) lower bound on complementing Büchi automata.
However, experimental results, in particular, the ones for the so-called Ramsey-
based algorithms show that the performance of these algorithms is superior. The
name Ramsey-based stems from the fact that their correctness is established by
relying on Ramsey’s theorem [19].1

The Ramsey-based algorithms for checking universality L(B) = Σω itera-
tively build a set of finite graphs starting from a finite base set and closing it
off under a composition operation. These graphs capture B’s essential behavior
on finite words. The language of B is not universal iff this set contains graphs
with certain properties that witness the existence of an infinite word that is not
accepted by B. First, there must be a graph that is idempotent with respect to
the composition operation. This corresponds to the fact that all the runs of B on
the finite words described by the graph loop. We must also require that no ac-
cepting state occurs on these loops. Second, there must be another graph for the
runs on a finite word that reach that loop. To check the inclusion L(A) ⊆ L(B)
the graphs are annotated with additional information about runs of A on finite
words. Here, in case of L(A) 6⊆ L(B), the constructed set of graphs contains
graphs that witness the existence of at least one infinite word that is accepted
by A but all runs of B on that word are rejecting. The Ramsey-based approach
generalizes to parity automata [15]. The parity condition is useful in modeling
reactive programs in which certain modules are supposed to terminate and oth-
ers are not supposed to terminate. Also, certain Boolean combinations of Büchi
(non-termination) and co-Büchi (termination) conditions can easily be expressed
as a parity condition. Although parity automata can be translated into Büchi
automata, it algorithmically pays off to handle parity automata directly [15].

In this paper, we extend the Ramsey-based analysis to visibly pushdown au-
tomata (VPAs) [4]. This automaton model restricts nondeterministic pushdown
automata in the way that the input symbols determine when the pushdown au-
tomaton pushes or pops symbols from its stack. In particular, the stack heights
are identical at the same positions in every run of any VPA on a given input.
It is because of this syntactic restriction that the class of visibly pushdown lan-

1 Büchi’s original complementation construction, which also relies on Ramsey’s the-
orem, shares similarities with these algorithms. However, there is significantly less
overhead when checking universality and inclusion directly and additional heuristics
and optimizations are applicable [1, 5].
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guages retains many closure properties like intersection and complementation.
VPAs allow one to describe program behavior in more detail than finite-state
automata. They can account for the nesting of procedures in executions of recur-
sive imperative programs. Non-regular properties like “an acquired lock must be
released within the same procedure” are expressible by VPAs. Model checking
of recursive state machines [3] and Boolean programs, which are widely used
as abstractions in software model checking, can be carried out in this refined
setting by using VPAs for representing the behavior of the programs and the
properties. Similar to the automata-theoretic approach to model checking finite-
state systems, checking the inclusion of the languages of VPAs is vital here.
This time, the respective decision problem is even EXPTIME-complete. Other
applications for checking language inclusion of VPAs when reasoning about re-
cursive imperative programs also appear in conformance checking [11] and in the
counterexample-guided-abstraction-refinement loop [16].

A generalization of the Ramsey-based approach to VPAs is not straightfor-
ward since the graphs that capture the essential behavior of an automaton must
also account for the stack content in the runs. Moreover, to guarantee termina-
tion of the process that generates these graphs, an automaton’s behavior of all
runs must be captured within finitely many such graphs. In fact, when consid-
ering pushdown automata in general such a generalization is not possible since
the universality problem for pushdown automata is undecidable. We circumvent
this problem by only considering graphs that differ in their stack height by at
most one, and by refining the composition of such graphs in comparison to the
unrestricted way that graphs can be composed in the Ramsey-based approach
to finite automata. Then the composition operation only needs to account for
the top stack symbols in all the runs described by the graphs, which yields a
finite set of graphs in the end.

The main contribution of this paper is the generalization of the Ramsey-
based approach for checking universality and language inclusion for VPAs over
infinite inputs, where the automata’s acceptance condition is stated as a parity
condition. This approach avoids determinization and complementation construc-
tions. The respective problems where the VPAs operate over finite inputs are
special cases thereof. We also experimentally evaluate the performance of our al-
gorithms showing that the Ramsey-based inclusion checking for is more efficient
than methods that are based on determinization and complementation.

The remainder of this paper is organized as follows. In Sect. 2, we recall the
framework of VPAs. In Sect. 3, we provide a Ramsey-based universality check
for VPAs. Note that universality is a special case of language inclusion. We treat
universality in detail to convey the fundamental ideas first. In Sect. 4, we extend
this to a Ramsey-based inclusion check for the languages given by VPAs. In
Sect. 5, we report on the experimental evaluation of our algorithms. In Sect. 6,
we draw conclusions. Additional details are given in the appendix.

2 Preliminaries

Words. The set of finite words over the alphabet Σ is Σ∗ and the set of infinite
words over Σ is Σω. Let Σ+ := Σ∗ \{ε}, where ε is the empty word. The length
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da b a c d d c

Fig. 1. Nested word w= adbacddbc with Σint = {a}, Σcall = {b, c}, and Σret = {d}. Its
pending positions are 1 and 7 with w1 =d and w7 = c. The call position 2 with w2 = b
matches with the return position 6 with w6 =d. The positions 4 and 5 also match.

of a word w is written as |w|, where |w| = ω when w is an infinite word. For a
word w, wi denotes the letter at position i < |w| in w. That is, w = w0w1 . . . if
w is infinite and w = w0w1 . . . wn−1 if w is finite and |w| = n. With inf(w) we
denote the set of letters of Σ that occur infinitely often in w ∈ Σω.

Nested words [4] are linear sequences equipped with a hierarchical structure,
which is imposed by partitioning an alphabet Σ into the pairwise disjoint sets
Σint,Σcall, andΣret. For a finite or infinite word w overΣ, we say that the position
i ∈ N with i < |w| is an internal position if wi ∈ Σint. It is a call position if wi ∈
Σcall and it is a return position if wi ∈ Σret. When attaching an opening bracket 〈
to every call position and closing brackets 〉 to the return positions in a word w,
we group the word w into subwords. This grouping can be nested. However, not
every bracket at a position in w needs to have a matching bracket. The call and
return positions in a nested word without matching brackets are called pending.
To emphasize this hierarchical structure imposed by the brackets 〈 and 〉, we
also refer to the words in Σ∗ ∪Σω as nested words. See Fig. 1 for illustration.

To ease the exposition, we restrict ourselves in the following to nested words
without pending positions.2 For ] ∈ {∗, ω}, NW ](Σ) denotes the set of words in
Σ] with no pending positions. These words are also called well-matched.

Automata. A visibly pushdown automaton [4], VPA for short, is a tuple A =
(Q,Γ,Σ, δ, qI , Ω), where Q is a finite set of states, Γ is a finite set of stack
symbols with ⊥ /∈ Γ , Σ = Σint ∪ Σcall ∪ Σret is the input alphabet, δ consists
of three transition functions δint : Q × Σint → 2Q, δcall : Q × Σcall → 2Q×Γ , and
δret : Q×(Γ ∪{⊥})×Σret → 2Q, qI ∈ Q is the initial state, and Ω : Q→ N is the
priority function. We sometimes write Γ⊥ as a short form for Γ ∪{⊥}. We write
Ω(Q) to denote the set of all priorities used in A, i.e. Ω(Q) := {Ω(q) | q ∈ Q}.
The size of A is |Q| and its index is |Ω(Q)|.

A run of A on w ∈ Σω is a word (q0, γ0)(q1, γ1) . . . ∈ (Q × Γ+
⊥ )ω with

(q0, γ0) = (qI ,⊥) and for each i ∈ N, the following conditions hold:
1. If wi ∈ Σint then qi+1 ∈ δint(qi, wi) and γi+1 = γi.
2. If wi ∈ Σcall then (qi+1, B) ∈ δcall(qi, wi) and γi+1 = Bγi, for some B ∈ Γ .
3. If wi ∈ Σret and γi = Bu with B ∈ Γ⊥ and u ∈ Γ ∗⊥ then qi+1 ∈ δret(qi, B,wi)

and γi+1 = u if u 6= ε and γi+1 = ⊥, otherwise.
The run is accepting if max{Ω(q) | q ∈ inf(q0q1 . . . )} is even. Runs of A on finite
words are defined as expected. In particular, a run on a finite word is accepting
if the last state in the run has an even priority. For ] ∈ {∗, ω}, we define

L](A) :=
{
w ∈ NW ](Σ)

∣∣ there is an accepting run of A on w
}
.

Priority and Reward Ordering. For an arbitrary set S, we always assume that †
is a distinct element not occurring in S. We write S† for S ∪ {†}. We use † to
explicitly speak about partial functions into S, i.e., † denotes undefinedness.

2 Our results extend to nested words with pending positions; see appendix.
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We define the following two orders on N†. The priority ordering is denoted v
and is the standard order of type ω+ 1. Thus, we have 0 < 1 < 2 < · · · < †. The
reward ordering � is defined by † ≺ · · · ≺ 5 ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ 4 ≺ · · · . Note
that † is maximal for v but minimal for �. For a finite nonempty set S ⊆ N†,⊔
S and

b
S denote the maxima with respect to the priority ordering v and the

reward ordering �, respectively. Furthermore, we write c t c′ for
⊔
{c, c′}.

The reward ordering reflects the intuition of how valuable a priority of a
VPA’s state is for acceptance: even priorities are better than odd ones, and
the bigger an even one is the better, while small odd priorities are better than
bigger ones because it is easier to subsume them in a run with an even priority
elsewhere. The element † stands for the non-existence of a run.

3 Universality Checking

Throughout this section, we fix a VPA A = (Q,Γ,Σ, δ, qI , Ω). We describe an
algorithm that determines whether Lω(A) = NW ω(Σ), i.e., whether A accepts
all well-matched infinite nested words over Σ.3

Central to the algorithm are so-called transition profiles. They capture A’s
essential behavior on finite words.

Definition 1. There are three kinds of transition profiles, TP for short. The
first one is an int-TP, which is a function of type Q×Q→ Ω(Q)†. We associate
with a symbol a ∈ Σint the int-TP fa. It is defined as

fa(q, q′) :=

{
Ω(q′) if q′ ∈ δint(q, a) and

† otherwise.

A call-TP is a function of type Q × Γ × Q → Ω(Q)†. With a symbol a ∈ Σcall

we associate the call-TP fa. It is defined as

fa(q,B, q′) :=

{
Ω(q′) if (q′, B) ∈ δcall(q, a) and

† otherwise.

Finally, a ret-TP is a function of type Q × Γ⊥ × Q → Ω(Q)†. With a symbol
a ∈ Σret we associate the ret-TP fa. It is defined as

fa(q,B, q′) :=

{
Ω(q′) if q′ ∈ δret(q,B, a) and

† otherwise.

A TP of the form fa for an a ∈ Σ is also called atomic. For τ ∈ {int, call, ret},
we define the set of atomic TPs as Tτ := {fa | a ∈ Στ}.

The above TPs describe A’s behavior when A reads a single letter. In the
following, we define how TPs can be composed to describe A’s behavior on words
of finite length. The composition, written f ◦ g, can only be applied to TPs of
certain kinds. This ensures that the resulting TP describes the behavior on a
word w such that, after reading w, A’s stack height has changed by at most one.

3 An extension of the algorithm to account for non-well-matched nested words and a
universality check for VPAs over finite words is given in App. E and F, respectively.
Moreover, in App. C, we present a complementation construction for VPAs based
on determinization and compare it to the presented algorithm.
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Fig. 2. VPA (left) and the TPs (right) from Example 4.

Definition 2. Let f and g be TPs. There are six different kinds of compositions,
depending on the TPs’ kind of f and g, which we define in the following. If f
and g are both int-TPs, we define

(f ◦ g)(q, q′) :=
j{

f(q, q′′) t g(q′′, q′)
∣∣ q′′ ∈ Q} .

If f is an int-TP and g is either a call-TP or a ret-TP, we define

(f ◦ g)(q,B, q′) :=
j{

f(q, q′′) t g(q′′, B, q′)
∣∣ q′′ ∈ Q} and

(g ◦ f)(q,B, q′) :=
j{

g(q,B, q′′) t f(q′′, q′)
∣∣ q′′ ∈ Q} .

If f is a call-TP and g a ret-TP, we define

(f ◦ g)(q, q′) :=
j{

f(q,B, q′′) t g(q′′, B, q′)
∣∣ q′′ ∈ Q and B ∈ Γ

}
.

Intuitively, the composition of two TPs f and g is obtained by following any
edge through f from some state q to another state q′′, then following any edge
through g to some other state q′. The value of this path is the maximum of the
two values encountered in f and g with respect to the priority ordering v. Then
one takes the maximum over all such possible values with respect to the reward
ordering � and obtains a weighted path from q to q′ in the composition.

We associate finite words with TPs as follows. With a letter a ∈ Σ we
associate the TP fa as done in Def. 1. If the words u, v ∈ Σ+ are associated
with the TPs f and g, respectively, we associate the word uv with the TP f ◦ g,
provided that f ◦ g is defined. A word cannot be associated with two distinct
TPs. This follows from the following lemma, which is easy to prove.

Lemma 3. Let f , g, h, and k be TPs. If (h ◦ f) ◦ (g ◦ k) and h ◦
(
(f ◦ g) ◦ k

)
are both defined then (h ◦ f) ◦ (g ◦ k) = h ◦

(
(f ◦ g) ◦ k

)
.

If the word u ∈ Σ+ is associated with the TP f , we write fu for f . Note that
two distinct words can be associated with the same TP, i.e., it can be the case
that fu = fv, for u, v ∈ Σ+ with u 6= v. Intuitively, if this is the case then A’s
behavior on u is identical to A’s behavior on v.

The following example illustrates TPs and their composition.
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Example 4. Consider the VPA on the left in Fig. 2 with the states q0, q1, q2, and
q3. The states’ priorities are the same as their indices, and is also shown as a
color: red (0), green (1), yellow (2), and blue (3) represent priorities. We assume
that Σint = {a}, Σcall = {b}, and Σret = {c}. The stack alphabet is Γ = {X,Y }.
We can ignore the stack symbol ⊥ since the VPA has no transitions for c and ⊥.

Fig. 2 also depicts the TPs fa, fb, fc and their compositions fa ◦fb = fab and
fb◦fc = fbc. The VPA’s states are in-ports and out-ports of a TP. Assume that f
is a call-TP. An in-port q is connected with an out-port q′ if f(q,B, q′) 6= †, for
some B ∈ Γ . Moreover, this connection of the two ports is labeled with the stack
symbol B and the priority. Again, we use the colors to represent the priorities of
the connections between the in-ports and the out-ports. For example, the connec-
tion in the TP fa from the in-port q0 to the out-port q0 is red since fa(q0, q0) = 0.
Since fa is an int-TP, connections are not labeled with stack symbols.

In a composition f ◦ g, we plug f ’s out-ports with g’s in-ports together. The
priority from an in-port of f ◦ g to an out-port of f ◦ g is the maximum with
respect to the priority ordering v of the priorities of the two connections in f
and g. However, if f is a call-TP and g a ret-TP, we are only allowed to connect
the ports in f ◦ g, if the stack symbols of the connections in f and g match.
Finally, since there can be more than one connection between ports in f ◦ g, we
take the maximum with respect to reward ordering �.

We extend the composition operation ◦ to sets of TPs in the natural way,
i.e., we define F ◦G := {f ◦ g | f ∈ F and g ∈ G for which f ◦ g is defined}.

Definition 5. Define T as the least solution to the equation

T = Tint ∪ Tcall ◦ Tret ∪ Tcall ◦ T ◦ Tret ∪ T ◦ T .

Note that the operations ◦ and ∪ are monotonic, and the underlying lattice of
the powerset of all int-TPs is finite. Thus, the least solution always exists and
can be found using fixpoint iteration in a finite number of steps.

The following lemma is helpful in proving that the elements of T can be used
to characterize (non-)universality of A.

Lemma 6. For every TP f , we have f ∈ T only if there is a well-matched
w ∈ Σ+ with f = fw.

We need the following notions to characterize universality in terms of the
existence of TPs with certain properties.

Definition 7. Let f be an int-TP.
(i) f is idempotent if f ◦ f = f . Note that only an int-TP can be idempotent.
(ii) For q ∈ Q, we write f(q) for the set of all q′ ∈ Q that are connected to

q in this TP, i.e., f(q) := {q′ ∈ Q | f(q, q′) 6=†}. Moreover, for Q′ ⊆ Q, we
define f(Q′) :=

⋃
q∈Q′ f(q).

(iii) f is bad for the set Q′ ⊆ Q if f(q, q) is either † or odd, for every q ∈ f(Q′).
A good TP is a TP that is not bad. Note that any TP is bad for ∅. In the
following, we consider bad TPs only in the context of idempotent TPs.
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1 N ← Tint ∪ Tcall ◦ Tret

2 T ← N
3 while N 6= ∅ do
4 forall (fu, fv) ∈ N × T ∪ T ×N do
5 if fv idempotent and fv bad for fu(qI) then
6 return universality does not hold, witnessed by uvω

7 N ←
(
N ◦ T ∪ T ◦N ∪ Tcall ◦N ◦ Tret

)
\ T

8 T ← T ∪N
9 return universality holds

Fig. 3. Universality check UNIV for VPAs with respect to well-matched words.

Example 8. Reconsider the VPA from Example 4 and its TPs. It is easy to
see that TP g := fa ◦ fa is idempotent. Since g(q2, q2) = 2, g is good for any
Q′ ⊆ {q0, q1, q2, q3} with q2 ∈ Q′. The intuition is that there is at least one run
on (aa)ω that starts in q2 and loops infinitely often through q2. Moreover, on this
run 2 is the highest priority that occurs infinitely often. So, if there is a prefix
v ∈ Σ+ with a run that starts in the initial state and ends in q2, we have that
v(aa)ω is accepted by the VPA. The TP g is bad for {q1, q3}, since g(q1, q1) = †
and g(q3, q3) = 3. So, if there is prefix v ∈ Σ+ for which all runs that start in
the initial state and end in q1 or q3 then v(aa)ω is not accepted by the VPA.
Another TP that is idempodent is the TP g′ := fb ◦

(
(fb ◦ fc) ◦ fc

)
. Here, we

have that g′(q1, q1) = 2 and g′(q, q′) = †, for all q, q′ ∈ {q0, q1, q2, q3} with not
q = q′ = q1. Thus, g′ is bad for every Q′ ⊆ Q with q1 6∈ Q′.

The following theorem characterizes universality of the VPA A in terms of
the TPs that are contained in the least solution of the equation from Def. 5.

Theorem 9. Lω(A) 6= NW ω(Σ) iff there are TPs f, g ∈ T such that g is idem-
potent and bad for f(qI).

Thm. 9 can be used to decide universality for VPAs with respect to the set
of well-matched infinite words. The resulting algorithm, which we name UNIV,
is depicted in Fig. 3. It computes T by least-fixpoint iteration and checks at each
stage whether two TPs exist that witness non-universality according to Thm. 9.
The variable T stores the generated TPs and the variable N stores the newly
generated TPs in an iteration. UNIV terminates if no new TPs are generated in
an iteration. Termination is guaranteed since there are only finitely many TPs.
For returning a witness of the VPA’s non-universality, we assume that we have
a word associated with a TP at hand. UNIV’s asymptotic time complexity is as
follows, where we assume that we use hash tables to represent T and N .

Theorem 10. Assume that the given VPA A has n ≥ 1 states, index k ≥ 2,
and m = max{1, |Σ|, |Γ |}, where Σ is the VPA’s input alphabet and Γ its stack

alphabet. The running time of the algorithm UNIV is in m3 · 2O(n2·log k).

There are various ways to tune UNIV. For instance, we can store the TPs in
a single hash table and store pointers to the newly generated TPs. Furthermore,
we can store pointers to idempotent TPs. Another optimization also concerns
the badness check in the line 4 to 6. Observe that it is sufficient to know the sets
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fu(qI), for fu ∈ T , i.e, the sets Q′ ⊆ Q for which all runs for some well-matched
word end in a state in Q′. We can maintain a set R to store this information. We
initialize R with the singleton set

{(
ε, {qI}

)}
. We update it after line 8 in each

iteration by assigning the set R ∪
{(
uv, fv(Q

′)
) ∣∣ (u,Q′) ∈ R and fv ∈ T

}
to it.

After this update, we can optimize R by removing an element (u,Q′) from it if
there is another element (u′, Q′′) in R with Q′′ ⊆ Q′. These optimizations do
not improve UNIV’s worst-case complexity but they are of great practical value.

4 Inclusion Checking

In this section, we describe how to check language inclusion for VPAs. For the
sake of simplicity, we assume a single VPA and check for inclusion of the lan-
guages that are defined by two states q1I and q2I . It should be clear that it is
always possible to reduce the case for two VPAs to this one by forming the dis-
joint union of the two VPAs. Thus, for i ∈ {1, 2}, let Ai = (Q,Γ,Σ, δ, qiI , Ω) be
the respective VPA. We describe how to check whether Lω(A1) ⊆ Lω(A2) holds.

Transition profiles for inclusion checking extend those for universality check-
ing. A tagged transition profile (TTP) of the int-type is an element of(

Q×Ω(Q)×Q
)
×
(
Q×Q→ Ω(Q)†

)
.

We write it as f 〈p,c,p
′〉 instead of (p, c, p′, f) in order to emphasize the fact that

the TP f is extended with a tuple of states and priorities. A call-TTP is of type(
Q× Γ ×Ω(Q)×Q

)
×
(
Q× Γ ×Q→ Ω(Q)†

)
and a ret-TTP is of type(

Q×Ω(Q)× Γ⊥ ×Q
)
×
(
Q× Γ ×Q→ Ω(Q)†

)
.

Accordingly, they are written f 〈p,B,c,p
′〉 and f 〈p,c,B,p

′〉, respectively.
The intuition of an int-TTP f 〈p,c,p

′〉 is as follows. The TP f describes the
essential information of all runs of the VPA A2 on a well-matched word u ∈ Σ+.
The attached information 〈p, c, p′〉 describes the existence of some run of the
VPA A1 on u. This run starts in state p, ends in state p′, and the maximal
occurring priority on it is c. The intuition behind a call-TTP or a ret-TTP is
similar. The symbol B in the annotation is the topmost stack symbol that is
pushed or popped in the run of A2 for the pending position in the word u.

For a ∈ Σ, we now associate a set Fa of TTPs with the appropriate type.
Recall that fa stands for the TP associated to the letter a as defined in Def. 1.

– If a∈Σint, let Fa :={f 〈p,Ω(p′),p′〉
a | p, p′ ∈ Q and p′ ∈ δint(p, a)}.

– If a∈Σcall, let Fa :={f 〈p,B,Ω(p′),p′〉
a | p, p′ ∈ Q, B∈Γ, and (p′, B) ∈ δcall(p, a)}.

– If a∈Σret, let Fa :={f 〈p,Ω(p′),B,p′〉
a | p, p′ ∈ Q, B∈Γ⊥, and p′ ∈ δret(p,B, a)}.

As with TPs, the composition of TTPs is only allowed in certain cases. They
are the same as for TPs, e.g., the composition of a call-TTP with an int-TTP
results in a call-TTP, and with a ret-TTP it results in an int-TTP. However, the
composition of TTPs is not a monoid operation but behaves like the composition
of morphisms in a category in which the states in Q, respectively pairs of states
and stack symbols in Γ , act as objects. A TTP f 〈p,c,p

′〉 for instance can be
seen as a morphism from p to p′, and it can therefore only be composed with a
morphism from p′ to anything else.
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The composition of two TTPs extends the composition of the underlying
TPs by explaining how the tag of the resulting TTP is obtained. For int-TTPs
f 〈p,c,p

′〉 and g〈p
′,c′,p′′〉, we define

f 〈p,c,p
′〉 ◦ g〈p

′,c′,p′′〉 := (f ◦ g)〈p,ctc
′,p′′〉 .

Composing an int-TTP f 〈p,c,p
′〉 and a call-TTP g〈q,B,c

′,q′〉 yields call-TTPs:

f 〈p,c,p
′〉 ◦ g〈q,B,c

′,q′〉 := (f ◦ g)〈p,B,ctc
′,q′〉 if p′ = q

g〈q,B,c
′,q′〉 ◦ f 〈p,c,p

′〉 := (g ◦ f)〈q,B,ctc
′,p′〉 if q′ = p .

The two possible compositions of an int-TTP with a ret-TTP are defined in
exactly the same way. Finally, the composition of a call-TTP f 〈p,B,c,p

′〉 and a
ret-TTP g〈p

′,c′,B,p′′〉 is defined as

f 〈p,B,c,p
′〉 ◦ g〈p

′,c′,B,p′′〉 := (f ◦ g)〈p,ctc
′,p′′〉 .

Note that the stack symbol B is the same in both annotations. As for sets of
TPs, we extend the composition of TTPs to sets.

Similar to Def. 5, we define a set T to be the least solution to the equation

T = Tint ∪ Tcall ◦ Tret ∪ Tcall ◦ T ◦ Tret ∪ T ◦ T ,
where Tτ :=

⋃
{Fa | a ∈ Στ}, for τ ∈ {int, call, ret}. This allows us to characterize

language inclusion between two VPAs in terms of the existence of certain TTPs.

Theorem 11. Lω(A1) 6⊆ Lω(A2) iff there are TTPs f 〈q
1
I ,c,p〉 and g〈p,d,p〉 in T

fulfilling the following properties:
(1) The priority d is even.
(2) The TP g is idempotent and bad for f(q2I ).

Thm. 11 yields an algorithm INCL to check Lω(A1) 6⊆ Lω(A2), for given
VPAs A1 and A2. It is along the same lines as the algorithm UNIV and we omit
it.4 The essential difference lies in the sets Tint, Tcall and Tret, which contain
TTPs instead of TPs, and the refined way in which they are being composed.
Each iteration now searches for two TTPs that witness the existence of some
word of the form uvω that is accepted by A1 but not accepted by A2. Similar
optimizations that we sketch for UNIV at the end of Sect. 3 also apply to INCL.

For the complexity analysis of the algorithm INCL below, we do not assume
that the VPAs A1 and A2 necessarily share the state set, the priority function,
the stack alphabet, and the transition functions as assumed at the beginning of
this subsection. Only the input alphabet Σ is the same for A1 and A2.

Theorem 12. Assume that for i ∈ {1, 2}, the number of states of the VPA Ai
is ni ≥ 1, ki ≥ 2 its index, and mi = max{1, |Σ|, |Γi|}, where Σ is the VPA’s
input alphabet and Γi its stack alphabet. The running time of the algorithm INCL
is in n41 · k21 ·m1 ·m3

2 · 2O(n2
2·log k2).

5 Evaluation

Our prototype tool FADecider5 implements the presented algorithms in the pro-
gramming language OCaml. To evaluate the tool’s performance we carried out

4 See Fig. 4 in App. H.
5 The tool (version 1.1) is publicly available at www2.tcs.ifi.lmu.de/fadecider.
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Tab. 1. Statistics on the input instances. The first row lists the number of states of
the respective VPAs from an input instance and their alphabet sizes. The number of
stack symbols of a VPA and its index are not listed, since in these examples the VPA’s
stack symbol set equals its state set and states are either accepting or non-accepting.
The second row lists whether the inclusions L∗(A) ⊆ L∗(B) and Lω(A) ⊆ Lω(B) of
the respective VPAs hold.

ex ex-§2.5 gzip gzip-fix png2ico

size A / size B / alphabet size 9 / 5 / 4 10 / 5 / 5 51 / 71 / 4 51 / 73 / 4 22 / 26 / 5
language relation ⊆ / ⊆ 6⊆ / ⊆ 6⊆ / ? ⊆ / ⊆ ⊆ / ⊆

Tab. 2. Experimental results for the language-inclusion checks. The row “FADecider”
lists the running times for the tool FADecider for checking L∗(A) ⊆ L∗(B) and
Lω(A) ⊆ Lω(B) The row “#TTPs” lists the number of encountered TTPs. The sym-
bol ‡ indicates that FADecider ran out of time (2 hours). The row “OpenNWA” lists
the running times for the implementation based on the OpenNWA library for checking
inclusion on finite words and the VPA’s size obtained by complementing B.

ex ex-§2.5 gzip gzip-fix png2ico

FADecider 0.00s / 0.00s 0.00s / 0.00s 36s / ‡ 42s / 294s 0.10s / 0.11s
#TTPs 6 / 6 18 / 19 694 / ‡ 518 / 1,117 586 / 609

OpenNWA 0.16s / 27 0.04s / 11 49s / 27 1,104s / 176 74.70s / 543

the following experiments for which we used a 64-bit Linux machine with 4 GB
of main memory and two dual-core Xeon 5110 CPUs, each with 1.6 GHz. Our
benchmark suite consists of VPAs from [11], which are extracted from real-world
recursive imperative programs. Tab. 1 describes the instances, each consisting of
two VPAs A and B, in more detail. Tab. 2 shows FADecider’s running times for
the inclusion checks L∗(A) ⊆ L∗(B) and Lω(A) ⊆ Lω(B).6 For comparison, we
used the OpenNWA library [12]. The inclusion check there is implemented by a
reduction to an emptiness check via a complementation construction. Note that
OpenNWA does not support infinite nested words at all and has no direct support
for only considering well-matched nested words. We used therefore OpenNWA
to perform the language-inclusion checks with respect to all finite nested words.

FADecider outperforms OpenNWA, on most examples by magnitudes. Pro-
filing the inclusion check based on the OpenNWA library yields that comple-
mentation requires about 90% of the overall running time. FADecider spends
about 90% of its time on composing TPs and about 5% on checking equality
of TPs. The experiments also show that FADecider’s performance on inclusion
checks for infinite words can be worse than the for finite words. Note that check-
ing inclusion for infinite-word languages is more expensive than for finite-word
languages, since, in addition to reachability, one needs to account for loops.

6 Conclusion

Checking universality and language inclusion for automata by avoiding deter-
minization and complementation has recently attracted a lot of attention, see,
e.g., [1, 9, 10, 13, 15]. We have shown that Ramsey-based methods for Büchi au-
tomata generalize to the richer automaton model of VPAs with a parity accep-
tance condition. Another competitive approach based on antichains has recently

6 Results of additional conducted experiments are given in App. I.
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also been extended to VPAs, however, only over finite words [6]. It remains to
be seen if optimizations for the Ramsey-based algorithms for Büchi automata [1]
extend, with similar speed-ups, to this richer setting. Another direction of fu-
ture work is to investigate Ramsey-based approaches for automaton models that
extend VPAs like multi-stack VPAs [17].

Acknowledgments. We are grateful to Evan Driscoll for providing us with VPAs.
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2. P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When simulation
meets antichains. In TACAS’10, LNCS 6015, pp. 158–174.

3. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM Trans. Progr. Lang. Syst., 27(4):786–
818, 2005.

4. R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):1–
43, 2009.
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A Additional Proof Details for Theorem 9

Before launching into the proof of Thm. 9, we need the following two simple
lemmas about the orderings � and v.

The intuition about the reward ordering � given in Sect. 2 is reflected in the
following lemma. It shows how the reward ordering � can be used to select a
“most accepting” run of a VPA on an infinite word. Its proof is straightforward
and therefore omitted. Its consequence is more important: Suppose there are
two runs on the same word such that the priorities of the first one are always
at most as high as the corresponding ones in the second run with respect to �.
Then the second run is accepting if the first one is.

Lemma 13. Let ρ, ρ′ ∈ Cω, where C ⊆ N is some finite set of priorities. Sup-
pose that ρi � ρ′i, for all i ∈ N. Then

⊔
inf(ρ) �

⊔
inf(ρ′).

The following lemma states that using the priority ordering v one can con-
tract an infinite run of a VPA whilst preserving the maximal priority occurring
infinitely often. Its proof is also straightforward and omitted.

Lemma 14. Let ρ ∈ Cω, where C ⊆ N is some finite set of priorities. Take
any strictly increasing sequence i0 < i1 < . . . of natural numbers and consider
ρ′ ∈ Cω with ρ′j :=

⊔
{ρij , . . . , ρij+1−1}, for j ∈ N. We have that

⊔
inf(ρ) =⊔

inf(ρ′).

In the remainder of this section, we prove the equivalence stated in Thm. 9.

“⇐” Let f and g be TPs in T with g idempotent and bad for f(qI). By Lem. 6,
there are u, v ∈ Σ+ such that f = fu and g = fv and both u and v contain no
pending positions. Then uvω contains no pending positions either. It remains to
be seen that uvω 6∈ Lω(A).

For the sake of contradiction assume that w := uvω ∈ L(A). Thus, there is
an accepting run ρ = (q0, γ0)(q1, γ1) . . . of A on w such that q0 = qI .

It must be the case that f(q0, q|u|) 6= †, since there is a possibility to reach q|u|
from q0 = qI , which is witnessed by the initial run fragment (q0, γ0) . . . (q|u|, γ|u|).
Hence, q|u| ∈ f(q0). Similarly, we conclude that q|uv| ∈ g(q|u|). This can be
iterated to show that g(q|u|+i|v|, q|u|+(i+1)|v|) 6= †, for all i ≥ 1. Since Q is finite,
there is a state q ∈ Q such that q = q|u|+i|v|, for infinitely many i. Assume
that i0 < i1 < . . . is such a sequence of indices. Define a sequence c0, c1, . . .
by cj :=

⊔
{Ω(qij ), . . . , Ω(qij+1−1)}, for j ∈ N. According to Lem. 14, we have⊔

infj→∞ cj =
⊔

infi→∞(Ω(qi)). Note that i0 can be chosen large enough such
that

⊔
infj→∞ cj =

⊔∞
i=j cj . Let c be this value.

Since g is idempotent we have gij+1−ij = g, for every j ∈ N and therefore
cj � g(q, q), for every j ∈ N. According to Lem. 13, g(q, q) would have to be
even, too, which contradicts the assumption that g is bad.
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“⇒” Suppose that w = a0a1a2 . . . ∈ NW ω(Σ) \ Lω(A). Note that w does not
contain any pending positions by assumption. We inductively define an infinite
sequence i0 < i1 < . . . of natural numbers with i0 := 0 and for every j ≥ 0, ij+1

is defined as follows:
– If aij ∈ Σint then ij+1 := ij + 1.
– If aij ∈ Σcall and ah for h > ij is its matching return position then ij+1 := h+1.
Note that the position h above always exists since w does not contain any pend-
ing call positions. Furthermore, note that aij ∈ Σret is impossible. This follows
from the assumption that w does not contain any pending return positions and
can be proved easily by contradiction, assuming that ij is the smallest posi-
tion with aij ∈ Σret. Finally, we remark that for every j ≥ 0, the finite word
aij . . . aij+1−1 does not contain pending positions. In other words, the sequence
i0 < i1 < . . . splits the infinite nested word w at the top level into infinitely many
finite nested words ai0 . . . ai1−1, ai1 . . . ai2−1, . . ., which are all well-matched.

Let I := {ij | j ∈ N} and I(2) := {(ij , ij′) | j, j′ ∈ N with j < j′}, and
consider the coloring χ : I(2) → T defined as χ(i, i′) := fai...ai′−1

. Note that
χ is well-defined, since ai . . . ai′−1 is a well-matched nested word, for (i, i′) ∈
I(2), and hence fai...ai′−1

∈ T. Furthermore, note that T is finite. By Ramsey’s
theorem [19], there is an infinite subset J of I and a TP g ∈ T such that
χ(j, j′) = g, for all j, j′ ∈ J with j < j′. Without loss of generality, we assume
that J = {j0, j1, . . .} with 0 < j0 < j1 < . . .. Furthermore, we define int-TP
f := χ(0, j0). Recall that i0 = 0.

We first observe that g is idempotent because we have

g ◦ g = χ(j0, j1) ◦ χ(j1, j2) = χ(j0, j2) = g .

Note that the composition of χ(j0, j1) and χ(j1, j2) is defined since g is an int-TP.
It remains to be seen that g is bad for f(qI). Suppose it is not. Then there

is some q′ ∈ f(qI) and some q ∈ g(q′) such that g(q, q) = c, for some even c. Let
c′ := f(qI , q

′), c′′ := g(q′, q), u := a0 . . . aj1−1 and vi := aji . . . aji+1−1, for every
i ≥ 1. Note that w = uv1v2v3 . . ..

We construct an accepting run of A on w as follows. We start with an infinite
sequence

(qI ,⊥)
u,c′−→f (q′,⊥)

v1,c
′′

−→ g (q,⊥)
v2,c−→g (q,⊥)

v3,c−→g . . .

Intuitively, the first arrow states that there is a run of A on u contained in f that
leads from the configuration (qI ,⊥) to the configuration (q′,⊥) and sees c′ as the
maximal priority on this part. The other arrows are interpreted similarly. Note
that the maximal priority occurring infinitely often in this sequence is, clearly,
c = g(q, q).

Next we turn this sequence into a run preserving a local and a global invari-
ant. Globally, c remains the maximal priority occurring infinitely often in these

sequences. Locally, on any part (q, γ)
v,c−→h (q′, γ′) in this sequence we have:

h = fv, and if |v| = 1 then there is a transition that transforms the configura-
tion (q, γ) into (q′, γ′) whilst reading v; and if |v| > 1 then h can be decomposed
in of three ways, according to Def. 5.
1. v = ab for some a ∈ Σcall and b ∈ ret, and h = fa ◦ fb.
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2. v = aub for some a ∈ Σcall, some well-matched u ∈ Σ+ and b ∈ Σret, and
h = fa ◦ fu ◦ fb.

3. v = v′v′′ for some well-matched v′, v′′ ∈ Σ+, and h = fv′ ◦ fv′′ .
Here we only consider case (2). The other cases are handled in the same way and
are actually simpler. So suppose that v = aub and h = fa ◦ fu ◦ fb. Then there
must be p, p′ ∈ Q, B ∈ Γ and h′ ∈ T such that h(q, q′) = c′ t c′′ t c′′′ where c′ =

fa(q,B, p), c′′ = h′(p, p′) and c′′′ = fb(p
′, B, q′). Then replace (q, γ)

v,c−→h (q′, γ′)
in this sequence with

(q, γ)
a,c′−→ (p,Bγ)

u,c′′−→h′ (p′, Bγ)
b,c′′′−→ (q′, γ) .

It is not hard to see that these transformation steps can be iterated independently
of each other, and the result is of the form

(qI ,⊥)
w0,c0−→ (q1, γ1)

w1,c1−→ (q2, γ2)
w2,c2−→ . . .

According to the local invariant, it forms a run of A on w. According to the global
invariant we have

⊔
infi→∞ ci = c. Now remember that above c was assumed

to be even. Hence, this is an accepting run of A on w which contradicts the
assumption that w ∈ NW ω(Σ) \ Lω(A).

B Additional Proof Details for Theorem 10

We assume the following time complexities of the following operations. Checking
whether two int-TPs are equal is in O(n2). Note that for int-TPs f and g, we
need to check for all tuples (q, q′) ∈ Q × Q, if the equality f(q, q′) = g(q, q′)
holds. It follows that adding an int-TP to T or N costs O(n2) time, since we
need to compute the TP’s hash value and make a lookup if the TP is already
stored in the table. TP composition is carried out in O(n3 ·m) time. Checking
whether an int-TP is idempotent is in O(n3) and checking for badness in O(n).

We observe that the number of int-TPs is bounded by (k + 1)n
2

. Thus, N

and T never store more than (k+ 1)n
2

elements. It is easy to see that an int-TP
is stored at most once in N at the beginning of the while loop starting at line 3
of the algorithm. It follows that the lines 4 to 6 of the algorithm are executed
at most once for a pair of int-TPs. In summary, the lines 4 to 6 take at most
2O(n2·log k) time.

It remains to analyze the time complexity of updating N and T in line 7 and
line 8 of the algorithm. The number of carried out composition operations in an
iteration is bounded by O(|N | · |T |+ |Tcall| · |N | · |Tret|). Since each int-TP appears
at most once in N , the number composition operations in total is bounded by
O(|T |2 + |T | · |Σ|2). Note that |Tcall|, |Tret| ≤ |Σ|. Since |T | ≤ (k + 1)n

2

and the
O(n3 · m) time complexity of TP composition, it follows that line 7 (without

removing the elements that are also in T ) takes in total at most m3 · 2O(n2·log k)

time. Removing the elements that are also in T in line 7 and T ’s update in
line 8 take in one iteration at most 2O(n2·log k) time. Since the algorithm never
removes elements from T , the number of iterations of the algorithm is bounded
by 2O(n2·log k).

Overall, we obtain the time complexity m3 · 2O(n2·log k).
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C Relation to Determinization and Complementation

In this section, we derive complementation constructions for VPAs from the
machinery developed in Sect. 3. We start with a complementation construction
for VPAs over finite well-matched words and extend it afterwards to infinite
well-matched words.

With the machinery developed in Sect. 3, a complementation construction is
straightforward. For a VPA A = (Q,Γ,Σ, δ, qI , Ω), we define the VPA C as the
tuple (Q′, Γ ′⊥, Σ, δ

′, q′I , Ω
′), where its components are as follows:

– Q′ := {f | f int-TP},
– Γ ′ := {f | f call-TP},
– for f, g ∈ Q’ and a ∈ Σ, the transitions are δ′int(f, a) :=

{
f ◦ fa

}
if a ∈ Σint,

δ′call(f, a) :=
{

(q′I , f ◦ fa)
}

if a ∈ Σcall, and δ′ret(f, g, a) :=
{

(g ◦ f) ◦ fa
}

and
δ′ret(f,⊥, a) := ∅ if a ∈ Σret,

– q′I(q, q) := 0 and q′I(q, q
′) := †, for q, q′ ∈ Q with q 6= q′, and

– for f ∈ Q′, we define Ω′(f) := 1 if f(qI , q) 6= † and Ω(q) is even, for some
q ∈ Q, and Ω′(f) := 0, otherwise.

The value of δ′ret(f,⊥, a) is actually irrelevant, since we assume inputs to be
well-matched words.

Note that C is deterministic. This construction is similar to Alur and Mad-
husudan’s determinization construction for nested-word automata over finite in-
puts [4], with some minor differences.7 One difference is due to our objective to
obtain a VPA that accepts the complement of A’s language. This is reflected
in the definition of the priority function Ω′. The state set Q′ and the stack al-
phabet Γ ′ are also different from Alur and Madhusudan’s construction. We use
sets of TPs and Alur and Madhusudan use the sets 2Q×Q and 2Q×Q × Σcall,
respectively. Elements from these sets represent similar information about the
runs of A. Finally, Alur and Madhusudan’s determinization construction deals
with pending positions in inputs and produces VPAs with slightly fewer states.

Proposition 15. L∗(C) = NW ∗(Σ) \ L∗(A).

The detailed proof proceeds along the lines of the one in [4]. Here we give
some intuition about the correctness of this construction. The VPA C uses the
int-TPs to keep track of the essential behavior of all of A’s runs on the input
processed so far. In addition to the classical subset construction, an int-TP f
stores the information about the existence of a run from a state q to a state q′,
i.e., f(q, q′) 6= †. This information is needed when returning from a call, where
the information f about A’s runs on the subword is combined with (1) the
information g about A’s runs on the prefix up to the matching call position
and (2) the information fa about A’s runs on the current letter a ∈ Σret. C has
pushed the call-TP g on its stack when reading the letter at the corresponding
call position. Now, it pops it from the stack and puts the information of the
different parts correctly together, i.e., C’s new state h after reading the return

7 The determinization construction of the printed version of the article is flawed. The
error has been corrected, see www.cis.upenn.edu/~alur/Jacm09.pdf.
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letter a is the composition of the TPs h := (g◦f)◦fa. Note that this composition
is always defined, since g is a call-TP, f an int-TP, and fa a ret-TP. Furthermore,
note that composing a TP with the int-TP q′I does not alter the TP.

In the following, we sketch a complementation construction for VPAs on in-
finite well-matched words. In fact, our construction is a direct extension of the
Ramsey-based complementation construction for Büchi automata, see, e.g., [5,7].
It is different from the one given by Alur and Madhusudan in [4]. There, the com-
plementation construction is split into three construction steps. One automaton
flattens the hierarchical structure of the inputs by transforming nested words
into so-called pseudo-runs. Another automaton reads such pseudo-runs and de-
cides whether to accept or reject the input. The final construction step combines
both automata to yield an automaton that accepts the complemented language.

Here we construct a VPA C′ for the complement of Lω(A) directly. It consists
of several, slightly modified, copies of the VPA C defined above. One component
C∗ takes care of finite prefixes of the inputs. The initial state of C′ is the initial
state of C∗. All states in C∗ have the odd priority 1. For each int-TP g, we have
another modified copy Cg of C. This component Cg takes care of infinite suffixes of
the inputs on which A’s runs are looping with respect to the TP g. Without loss
of generality, we assume that Cg’s initial state has only outgoing transitions. Cg’s
initial state has the even priority 2, all its other states have the odd priority 1.
In terms of the Büchi acceptance condition, all states of C′ are rejecting except
the initial states of the components Cg are accepting. Furthermore, we add an
ε-transition from Cg’s state g to its initial state. The VPA C∗ is connected to
the other VPAs as follows. For each pair (f, g) of int-TPs with f ◦ g = f , and g
idempotent and bad for f(qI), we connect the state f in C∗ with Cg’s initial state
by an ε-transition. Note that ε-transitions can be eliminated in the standard way.

Proposition 16. Lω(C′) = NW ω(Σ) \ Lω(A).

The proof proceeds along the lines of the proof of Büchi’s complementation
construction and uses similar arguments as in the proof of Thm. 9. In particular,
showing that the language on the right-hand side is a subset of the language on
the left-hand side relies on Ramsey’s theorem. Details are omitted.

We conclude this section by commenting on the differences and similarities
of the complementation construction and algorithm UNIV for checking univer-
sality of a given VPA. TPs are the basic building blocks of the complementation
construction above and they are also at the core of UNIV. This is actually not
surprising, since for both problems, one needs to investigate all runs on any in-
put. TPs are an appropriate entity for this purpose. However, the search space
for UNIV is more concise and explored with less overhead. The complementation
construction involves more book-keeping. In order to build the complement au-
tomaton we must determine and store the transitions between its states, which
are essentially int-TPs. First, we need to store multiple copies of an int-TP (or
pointers to it) for the states in the different copies of the VPA C. Similarly, a
call-TP might occur as a stack symbol in several transitions for call and return
letters. Second, in the complementation construction we keep track of how ex-
actly a state corresponding to an int-TP f is reachable, which might be different
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for well-matched words u, v ∈ Σ+ with fu = fv = f but u 6= v. In contrast, the
universality check UNIV only stores the TPs and iteratively composes them. Fi-
nally, in the complementation construction we only combine TPs f with atomic
TPs fa, for determining the successor states of states for the letters a ∈ Σ. The
universality check UNIV constructs the TPs less stringently in the sense that in
each iteration already constructed TPs fu and fv, with u, v ∈ Σ+, are composed
whenever their composition fu ◦ fv is defined.

D Nested Words with Pending Positions

Let ] ∈ {∗, ω}. In addition to NW ](Σ), we consider here the three sets of finite
words and four corresponding sets of infinite words.
– NW ]

call(Σ) is the set of words in Σ] that may contain pending call positions
but must not contain pending return positions.

– NW ]
ret(Σ) is the set of words in Σ] that may contain pending return positions

but must not contain pending call positions.
– NW ]

any(Σ) is the set of words in Σ] that may contain pending call positions
and pending return positions.

Note that NW ]
any(Σ) = Σ]. We also call the words in NW ](Σ) well-matched.

For program-verification purposes, the four sets NW ](Σ) and NW ]
call(Σ)

with ] ∈ {∗, ω} are certainly of most interest. For instance, NW ](Σ) can be
used to describe traces of recursive imperative programs in which every call
eventually terminates and there is a top-most procedure which runs forever, when
] = ω. Similarly, the set NW ω

call(Σ) can be used to describe program traces in

which subprocedures may not terminate. The sets NW ]
ret(Σ) and NW ]

any(Σ) are

included here because they are not any more difficult to handle, and NW ]
any(Σ)

may well be useful in specifications about correct call-and-return behavior, i.e.,
when one wants to assert rather than assume that no return is possible without
a corresponding call beforehand. Furthermore, the call-return dualism need not
only be used to describe recursive imperative programs but also programs using
data structures like stacks or lists. In that case, a pending return position may
correspond to a faulty access to the data structure, and it may therefore well be
reasonable to allow pending returns in such specifications.

For a VPA A, we define the additional languages

L]t(A) := {w ∈ NW ]
t(Σ) | there is an accepting run of A on w} ,

where ] ∈ {∗, ω} and t ∈ {call, ret, any}.

E Extended Universality Check

For extending our universality check UNIV to account for infinite words that are
not well-matched, we introduce a new operation on TPs, the so-called collapse
operation (·)↓. It turns call-TPs and ret-TPs into int-TPs. For a call-TP f , we
define

f↓(q, q′) :=
j{

f(q,B, q′)
∣∣B ∈ Γ}
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and

f↓(q, q′) := f(q,⊥, q′) ,

when f is a ret-TP. For int-TPs, (·)↓ is the identity. Thus, for call-TPs, the
collapse operation ignores the stack symbols and chooses the best that is available
with respect to the reward ordering. For ret-TPs, the collapse operation takes
the value for ⊥, which occurs at the top of the stack when reading a symbol in
Σret iff the position is pending. The collapse operation extends in the natural
way to sets, i.e., F↓ := {f↓ | f ∈ F}.

Definition 17. In addition to the sets T we define the sets Tcall∗ and Tret∗ of
TPs as the least solution of the following system of equations.

T = Tint ∪ Tcall ◦ Tret ∪ Tcall ◦ T ◦ Tret ∪ T ◦ T
Tcall∗ = Tcall↓ ∪ T ∪ Tcall∗ ◦ Tcall∗

Tret = Tret↓ ∪ T ∪ Tret∗ ◦ Tret∗

The set T is the same as before. Tcall∗ and Tret∗ subsume T. Additionally,
they contain the collapsed atomic call-TPs and ret-TPs, respectively, and they
are closed under the composition operation ◦. The intuition is the following. Tcall∗

contains TPs that describe runs like TPs from T. In particular, the stack content
is ignored. The positions where the runs of the TPs in Tcall∗ are connected by
the composition are pending call positions. Although the VPA pushes at these
positions in each run a symbol on the stack, it never pops these symbols later.
Thus, the actual symbols are irrelevant. The intuition for Tret∗ is similar. Here,
the positions are pending return positions and the stack symbol is always ⊥.

The following theorem characterizes (non-)universality of the VPA A with
respect to the sets NW ω

call(Σ), NW ω
ret(Σ), and NW ω

any(Σ). Its proof proceeds
very much along the same lines as the proof of Thm. 9 and is therefore omitted.

Theorem 18. (a) Lωcall(A) 6= NW ω
call(Σ) iff there are TPs f, g ∈ Tcall∗ such that

g is idempotent and bad for f(qI).
(b) Lωret(A) 6= NW ω

ret(Σ) iff there are TPs f, g ∈ Tret∗ such that g is idempotent
and bad for f(qI).

(c) Lωany(A) 6= NW ω
any(Σ) iff there are TPs f, g ∈ Tret∗ or f ∈ Tcall∗ ∪ Tret∗ and

g ∈ Tcall∗ such that g is idempotent and bad for f(qI).

Note that a word in NW ω
any(Σ) might contain pending call and pending

return positions. However, all pending return positions must occur before the
pending call positions. In this case, the pending positions must occur in a finite
prefix of the infinite word.

With Def. 17 and Thm. 18 it is straightforward to adapt algorithm UNIV
from Fig. 3 so that it checks universality with respect to the sets NW ω

call(Σ),
NW ω

ret(Σ), and NW ω
any(Σ). The asymptotic time complexity does not alter.
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F Universality Check for Finite Nested Words

Checking universality of the VPA A with respect to finite words is now straight-
forward. Without loss of generality, we assume that ε ∈ L∗(A). This special case
can be checked separately.

Theorem 19. L∗(A) 6= NW ∗(Σ) iff there is a TP f ∈ T such that f(qI , q) = †
or Ω(q) is odd, for all states q ∈ Q.

The characterizations of A’s (non-)universality with respect to the other sets
NW ∗

call(Σ), NW ∗
ret(Σ), and NW ∗

any(Σ) can easily be derived in a similar manner.
The algorithmic realization is a straightforward adaption of algorithm UNIV

in Fig. 3. Note that further optimizations are possible. For instance, the TPs do
not need to keep track of the maximal occurred priorities in the runs that they
represents. The resulting asymptotic complexity is m3 · 2O(n2), where n and m
are as in Thm. 10. The number of iterations is bounded by 2O(n2).

G Additional Proof Details for Theorem 11

“⇐” Suppose there are TTPs f 〈q
1
I ,c,p〉 and g〈p,d,p〉 with the properties (1)

and (2). Assume that f = fu and g = fv, for some well-matched u, v ∈ Σ+.
It is easy to see that there is a run (q10 , γ

1
0)(q11 , γ

1
1) . . . of A1 on uvω with

(q10 , γ
1
0) = (q1I ,⊥) and (q1|u|+i|v|, γ

1
|u|+i|v|) = (p,⊥), for all i ∈ N. In particu-

lar, the stack content is ⊥ after reading uvi since u and v are well-matched.
Furthermore, d =

⊔
{Ω(q) | q ∈ inf(q10q

1
1 . . . )}. It follows that uvω ∈ Lω(A1).

The fact that uvω 6∈ Lω(A2) is a simple consequence of Thm. 9. Note that prop-
erty (2) above is exactly the condition that is sufficient for A2 not to accept this
uvω according to that theorem.

“⇒” Suppose there is a well-matched word w = a0a1 · · · ∈ Lω(A1)∩NW ω(Σ) \
Lω(A2). Let (q10 , γ

1
0)(q11 , γ

1
1) . . . be an accepting run of A1 on w. Thus, there is

an even priority d and a j0 ∈ N such that d is the maximal priority occurring
infinitely often in this run, and no greater priority occurs after position j0. Let
c be the maximal priority occurring before position j0.

As in the proof of Thm. 9, we define an infinite sequence i0 < i1 < . . . with
i0 = 0 such that aij . . . aij+1−1 is a well-matched word, for each j ∈ N. However,
we additionally require i1 ≥ j0. Now, consider the coloring χ(ij , ij′) := fv with
v = aij . . . aij′−1. As in the proof of the direction from left to right of Thm. 9,
Ramsey’s theorem yields TPs f ′ and g′ in T such that g′ is idempotent and bad
for f ′(q2I ). By the pidgeon hole principle, there must be some j, j′ ∈ N such that
j < j′ and qij = qij′ = p for some p ∈ Q. Define TPs

f := f ′ ◦ g′ ◦ . . . ◦ g′︸ ︷︷ ︸
j times

and g := g′ ◦ . . . ◦ g′︸ ︷︷ ︸
j′−j times

.

It is not hard to see, that g is also idempotent because g′ is, and it is bad for f(q2I )
because g′ is bad for f ′(q2I ). The atomic TPs that compose f and g can now be
tagged with single transitions of A1’s accepting run such that their compositions
become the TTPs f 〈q

1
I ,c,p〉 and g〈p,d,p〉, which finishes the proof.
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1 N ← Tint ∪ Tcall ◦ Tret

2 T ← N
3 while N 6= ∅ do
4 forall (f

〈p,c,p′〉
u , f

〈q,d,q′〉
v ) ∈ N × T ∪ T ×N do

5 if p = q1I , p′ = q = q′, d even, fv idempotent, and fv bad for fu(q2I ) then
6 return inclusion does not hold, witnessed by uvω

7 N ←
(
N ◦ T ∪ T ◦N ∪ Tcall ◦N ◦ Tret

)
\ T

8 T ← T ∪N
9 return inclusion holds

Fig. 4. Inclusion check INCL for VPAs with respect to well-matched words.

H Additional Proof Details for Theorem 12

The algorithm INCL for checking inclusion is given in Fig. 4. An extension to
check inclusion to nested words with pending positions are along the same lines
as the corresponding extensions of the universality check from App. E. We omit
the details.

In the remainder of this section, we analyze the complexity of INCL. We
observe that there are at most n21 · k1 · (k2 + 1)n

2
2 int-TTPs. Similar to the

algorithm UNIV, the total time of the check in the lines 4 to 6 of the algo-
rithm INCL is dominated by the number of int-TTP pairs, which is bounded by
n41 · k21 · 2O(n2

2·log k2).

For the update N in line 7, we need to compose TTPs in N with TTPs
in T , Tcall, and Tret. Note that a TTP consist of a TP and information about
A1’s behavior. A requirement for composing TTPs is that their information
on A1’s behavior fits together. For instance, the composition of the int-TTPs
f 〈p,c,p

′〉 and g〈q,d,q
′〉 is only defined when p′ = q. We can reduce the number

TTP compositions by grouping TTPs in T , N , Tcall, and Tret with respect to
their information about A’s behavior. For example, when int-TTPs f 〈p,c,p

′〉 and
g〈q,d,q

′〉 are both in T , we group them together in case p = q and p′ = q′. It
follows that the total number of TTP compositions is bounded by n41 · k1 ·m1 ·
m2

2 ·2O(n2
2·log k2). Note that each int-TTP in T is at most once in N and since the

states determine the priority in the information about A1’s behavior in the TTPs
in Tcall and Tret we have that |Tcall|, |Tret| ∈ O(n21 ·m1 ·|Σ|). Since equality between
two int-TTPs can be checked in O(n22) time and TTP composition can be carried
out in O(n32 ·m2) time, the updates of N (without removing elements that are

also in T ) take n41 ·k1 ·m1 ·m3
2 ·2O(n2

2·log k2) time in total. Removing the elements

that are also in T in line 8 and updating T in line 8 take n21 ·k1 ·2O(n2
2·log k2) time

in one iteration and n41 · k21 · 2O(n2
2·log k2) in total, since the number of iterations

is bounded n21 · k1 · 2O(n2
2·log k2)

By putting these upper bounds together, we obtain the claimed upper bound
on the time complexity of the algorithm INCL.
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Tab. 3. Experimental results for the language-inclusion checks with respect to the
sets NW ∗

any(Σ) and NW ω
any(Σ). The row “FADecider” lists the running times for the

tool FADecider for checking L∗any(A) ⊆ L∗any(B) and Lω
any(A) ⊆ Lω

any(B). The row
“#TTPs” lists the number of encountered TTPs. For comparison, the row “Open-
NWA” lists again the running times for the implementation based on the OpenNWA
library for checking L∗any(A) ⊆ L∗any(B) and the VPA’s size obtained by complement-
ing B.

ex ex-§2.5 gzip gzip-fix png2ico

FADecider 0.00s / 0.00s 0.00s / 0.00s 36s / ‡ 230s / 2,134s 0.10s / 0.12s
#TTPs 17 / 17 18 / 66 694 / ‡ 9,178 / 21,731 586 / 609

OpenNWA 0.16s / 27 0.04s / 11 49s / 27 1,104s / 176 74.70s / 543

Tab. 4. Experimental results for the language-inclusion checks of the VPAs A and B

with themselves. The row NW ∗ lists the running times for the checks L∗(A) ⊆ L∗(A)
and L∗(B) ⊆ L∗(B) performed by the tool FADecider, and the encountered number
of TTPs. The rows NW ω, NW ∗

any, and NW ω
any are similar. The rows “OpenNWA”

and “determinization” list the running times for the checks L∗any(A) ⊆ L∗any(A) and
L∗any(B) ⊆ L∗any(B) performed by the implementation based on the OpenNWA library,
and the size of the respective VPA resulting from determinization.

ex ex-§2.5 gzip gzip-fix png2ico

NW ∗ FADecider 0.00s / 0.00s 0.00s / 0.00s 0.14s / ‡ 0.14s / ‡ 0.07s / 1.12s
# TTPs 6 / 22 13 / 61 704 / ‡ 704 / ‡ 519 / 1,173

NW ω FADecider 0.00s / 0.00s 0.00s / 0.00s 0.14s / ‡ 0.14s / ‡ 0.08s / 1.14s
# TTPs 6 / 22 13 / 67 704 / ‡ 704 / ‡ 542 / 1,223

NW ∗
any

FADecider 0.00s / 0.01s 0.00s / 0.00s 5.52s / ‡ 5.52s / ‡ 0.07s / 1.14s
# TTPs 17 / 159 40 / 61 6,167 / ‡ 6,167 / ‡ 519 / 1,173

NW ω
any

FADecider 0.00s / 0.01s 0.00s / 0.00s 5.52s / ‡ 5.52s / ‡ 0.08s / 1.14s
# TTPs 17 / 171 40 / 67 6,167 / ‡ 6,167 / ‡ 542 / 1,223

OpenNWA 0.04s / 1.11s 0.03s / 0.21s 0.98s / † 0.98s / † 0.08s / †
determinization 9 / 135 10 / 55 174 / † 174 / † 22 / †

I Additional Experiments

In this section, we report on additional experiments for evaluating the perfor-
mance of FADecider, in particular, when checking language inclusion on all
nested words instead of restricting oneselves to well-matched nested words.
Tab. 3 shows the results of these exeriments. FADecider still outperforms Open-
NWA. However, for the instance gzip-fix, the FADecider’s running time and the
number of encounterted TTPs increase significantly. In Tab. 4, we list the results
of further experiments of checking language inclusion. Recall that timeouts (2
hours) are indicated by the symbol ‡. The symbol † indicates when a tool ran
out of memory (4 GB).


